Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
44
Добавлен:
11.02.2015
Размер:
197.74 Кб
Скачать

Введение Архитектура вычислительных систем Фон-неймановская архитектура эвм

Компьютер - это электронное устройство, которое выполняет операции ввода информации, хранения и обработки ее по определенной программе, вывод полученных результатов в форме, пригодной для восприятия человеком. За любую из названных операций отвечают специальные блоки компьютера:

устройство ввода, центральный процессор, запоминающее устройство, устройство вывода.

Все эти блоки состоят из отдельных меньших устройств.

1. Принцип двоичного кодирования. Согласно этому принципу, вся информация, поступающая в ЭВМ, кодируется с помощью двоичных сигналов (двоичных цифр, битов) и разделяется на единицы, называемые словами.

2. Принцип однородности памяти. Программы и данные хранятся в одной и той же памяти. Поэтому ЭВМ не различает, что хранится в данной ячейке памяти - число, текст или команда.

3. Принцип адресуемости памяти. Структурно основная память состоит из пронумерованных ячеек

4. Принцип последовательного программного управления. предполагает, что программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности.

5 Принцип жесткости архитектуры. Неизменяемость в процессе работы топологии, архитектуры, списка команд.

Операционный и управляющий блоки вычислительного устройства. Операционный блок состоит из регистров, сумматоров и других узлов, производящих прием из внешней среды и хранение кодов слов, их преобразование и выдачу во внешнюю среду результата преобразования.

Процесс функционирования во времени устройства обработки цифровой информации состоит из последовательности тактовых интервалов, в которых операционный блок производит определенные элементарные операции преобразования слов. Выполнение этих элементарных операций инициируется поступлением в операционный блок соответствующих управляющих сигналов из некоторого множества сигналов

Основная и внешняя память Внешняя (долговременная) память — это место длительного хранения данных, не используемых в данный момент в оперативной памяти компьютера.

Основная память (ОП) представляет собой единственный вид памяти, к которой ЦП может обращаться непосредственно (исключение составляют лишь регистры центрального процессора). Информация, хранящаяся на внешних ЗУ, становится доступной процессору только после того, как будет переписана в основную память.

Основная память может включать в себя два типа устройств: оперативные запоминающие устройства (ОЗУ) и постоянные запоминающие устройства (ПЗУ).

Системы прерывания Прерывание - это прекращение выполнения текущей команды или текущей последовательности команд для обработки некоторого события специальной программой - обработчиком прерывания, с последующим возвратом к выполнению прерванной программы. Событие может быть вызвано особой ситуацией, сложившейся при выполнении программы, или сигналом от внешнего устройства. Прерывание используется для быстрой реакции процессора на особые ситуации, возникающие при выполнении программы и взаимодействии с внешними устройствами.

Любая особая ситуация, вызывающая прерывание, сопровождается сигналом, называемым запросом прерывания (ЗП). Запросы прерываний от внешних устройств поступают в процессор по специальным линиям, а запросы, возникающие в процессе выполнения программы, поступают непосредственно изнутри микропроцессора. Механизмы обработки прерываний обоих типов схожи. Рассмотрим функционирование компьютера при появлении сигнала запроса прерывания, опираясь в основном на обработку аппаратных прерываний (рис. 1).

tр - время реакции процессора на запрос прерывания; tс - время сохранения состояния прерываемой программы и вызова обработчика прерывания; tв - время восстановления прерванной программы.

После появления сигнала запроса прерывания ЭВМ переходит к выполнению программы - обработчика прерывания.

Время реакции - это время между появлением сигнала запроса прерывания и началом выполнения прерывающей программы (обработчика прерывания) в том случае, если данное прерывание разрешено к обслуживанию.

Прерывания делятся на аппаратные и программные.

Аппаратные прерывания используются для организации взаимодействия с внешними устройствами. Запросы аппаратных прерываний поступают на специальные входы микропроцессора. Они бывают:

1. маскируемые, которые могут быть замаскированы программными средствами компьютера;

2. немаскируемые, запрос от которых таким образом замаскирован быть не может.

Программные прерывания вызываются следующими ситуациями:

1. особый случай, возникший при выполнении команды и препятствующий нормальному продолжению программы (переполнение, нарушение защиты памяти, отсутствие нужной страницы в оперативной памяти и т.п.);

2. наличие в программе специальной команды прерывания INT n, используемой обычно программистом при обращениях к специальным функциям операционной системы для ввода-вывода информации.

Вектор прерывания — закреплённый за устройством номер, который идентифицирует соответствующий обработчик прерываний. Векторы прерываний объединяются в таблицу векторов прерываний, содержащую адреса обработчиков прерываний. Местоположение таблицы зависит от типа и режима работы процессора.

Таблица векторов прерываний (англ. Interrupt Descriptor Table, IDT) используется в x86 архитектуре и служит для связи обработчика прерывания с вектором (номером) прерывания.

Система ПО Програ́ммное обеспе́чение, ПО — совокупность программ системы обработки информации и программных документов, необходимых для эксплуатации этих программ. Также — совокупность программ, процедур и правил, а также документации, относящихся к функционированию системы обработки данных.

Программное обеспечение принято по назначению подразделять на системное, прикладное и инструментальное

Систе́мное програ́ммное обеспе́чение — это комплекс программ, которые обеспечивают эффективное управление компонентами компьютерной системы, такими как процессор, оперативная память, устройства ввода-вывода, сетевое оборудование, выступая как «межслойный интерфейс», с одной стороны которого аппаратура, а с другой - приложения пользователя. В отличие от прикладного программного обеспечения, системное не решает конкретные прикладные задачи, а лишь обеспечивает работу других программ, управляет аппаратными ресурсами вычислительной системы и т.д.

ОС Операционная система - комплекс системных программ, расширяющий возможности вычислительной системы, а также обеспечивающий управление её ресурсами, загрузку и выполнение прикладных программ, взаимодействие с пользователями.

Основные функции (простейшие ОС):

-Загрузка приложений в оперативную память и их выполнение.

-Стандартизованный доступ к периферийным устройствам (устройства ввода-вывода).

-Управление оперативной памятью (распределение между процессами, виртуальная память).

-Управление доступом к данным на энергонезависимых носителях (таких как жёсткий диск, компакт-диск и т. д.), организованным в той или иной файловой системе

-Пользовательский интерфейс.

-Сетевые операции, поддержка стека протоколов.

Ядро и вспомогательные модули ОС Наиболее общим подходом к структуризации операционной системы является разделение всех ее модулей на две группы:

ядро — модули, выполняющие основные функции ОС;

модули - выполняющие вспомогательные функции ОС.

Модули ядра выполняют такие базовые функции ОС, как управление процессами, памятью, устройствами ввода-вывода и т. п. Ядро составляет сердцевину операционной системы, без него ОС является полностью неработоспособной и не сможет выполнить ни одну из своих функций.

В состав ядра входят функции, решающие внутрисистемные задачи организации вычислительного процесса, такие как переключение контекстов, загрузка/выгрузка станиц, обработка прерываний. Функции ядра, которые могут вызываться приложениями, образуют интерфейс прикладного программирования — API.

Для обеспечения высокой скорости работы ОС все модули ядра или большая их часть постоянно находятся в оперативной памяти, то есть являются резидентными.

Микроядро — это минимальная реализация функций ядра операционной системы.

Классические микроядра предоставляют лишь очень небольшой набор низкоуровневых примитивов, или системных вызовов, реализующих базовые сервисы операционной системы.

К ним относятся:

-управление адресным пространством оперативной памяти.

-управление адресным пространством виртуальной памяти.

-управление процессами и потоками (нитями).

-средства межпроцессной коммуникации.

Все остальные сервисы ОС в микроядерных архитектурах реализуются в адресном пространстве пользователя (Ring3) и называются сервисами. Примерами таких сервисов, выносимых в пространство пользователя в микроядерных архитектурах, являются сетевые сервисы, файловая система, драйверы.

Основное достоинство микроядерной архитектуры — высокая степень модульности ядра операционной системы. Это существенно упрощает добавление в него новых компонентов. В микроядерной операционной системе можно, не прерывая ее работы, загружать и выгружать новые драйверы, файловые системы и т. д.

Пользовательский и привилегированный ражим Аппаратура компьютера должна поддерживать как минимум два режима работы — пользовательский режим (user mode) и привилегированный режим, который также называют режимом ядра (kernel mode), или режимом супервизора (supervisor mode). Подразумевается, что операционная система или некоторые ее части работают в привилегированном режиме, а приложения — в пользовательском режиме.

Так как ядро выполняет все основные функции ОС, то чаще всего именно ядро становится той частью ОС, которая работает в привилегированном режиме (рис. 3.3). Иногда это свойство — работа в привилегированном режиме — служит основным определением понятия «ядро».

Соседние файлы в папке Экзамен Базы данных Отборное