Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

HaoZip RAR Архив_1 / ЛЕКЦИЯ 2

.doc
Скачиваний:
36
Добавлен:
11.02.2015
Размер:
99.84 Кб
Скачать

ЛЕКЦИЯ 2

Обыкновенным дифференциальным уравнением n –го порядка называется уравнение вида

F (xy(x), y '(x), y ''(x),  …  , y(n)(x)) = 0,

где F — известная функция (n + 2)-х переменных, x — независимая переменная из интервала (a,b), y(x) — неизвестная функция. Число n называется порядком уравнения.

 

Функция y(x) называется решением (или интегралом) дифференциального уравнения на промежутке (ab), если она n раз дифференцируема на (ab) и при подстановке в уравнение обращает его в тождество.

Обыкновенные дифференциальные уравнения, разрешенные относительно старшей производной, называют уравнениями в нормальной форме:

y(n) = f(xyy ',  y '',  …  , y(n − 1)).

Дифференциальное уравнение обычно имеет бесконечно много решений. Чтобы выделить нужное решение, используют дополнительные условия.

 

Чтобы выделить единственное решение уравнения n–го порядка обычно задают n начальных условий y(x0) = y0,  y '(x0) = y1,  y ''(x0) = y2,  …  , y(n − 1)(x0) = yn − 1.

 

Задачей Коши (или начальной задачей) называется задача отыскания решения y = y(x) уравнения

F(xy(x), y '(x), y ''(x),  …  , y(n )(x)) = 0,    x>x0,

удовлетворяющего условиям

y(x0) = y0,  y '(x0) = y1,  y ''(x0) = y2,  …  , y(n − 1)(x0) = yn − 1.

 

Условия   y(x0) = y0,  y '(x0) = y1,  y ''(x0) = y2,  …  , y(n − 1)(x0) = yn − 1 называются начальными данными, начальными условиями или данными Коши.

 

Любое конкретное решение y = φ(x) уравнения n –го порядка F(xy(x), y '(x), y ''(x),  …  , y(n )(x)) = 0, называется частным решением.

 

Общим решением дифференциального уравнения

F(xy(x), y '(x), y ''(x),  …  , y(n )(x)) = 0

называется функция

y = Ф(x,  С1, С2, … , Сn),

содержащая некоторые постоянные (параметры) С1, С2, … , Сn, и обладающая следующими свойствами:

  1. Ф(x, С1, С2,  … , Сn) является решением уравнения при любых допустимых значениях С1, С2, … , Сm;

  2. для любых начальных данных  y(x0) = y0,  y '(x0) = y1,  y ''(x0) = y2,  …  , y(n − 1)(x0) = yn − 1, для которых задача Коши имеет единственное решение,

существуют значения постоянных С1 = A1, С2 = A2,  … , Сn = An, такие что решение y = Ф(x, A1, A2,  …, An) удовлетворяет заданным начальным условиям.

Иногда частное или общее решение уравнения удается найти только в неявной форме: f(xy) = 0 или G(xy, С1,  С2,  ..., Сn) = 0.

Такие неявно заданные решения называются частным интегралом или общим интегралом уравнения.

 

Если задачу об отыскании всех решений дифференциального уравнения удается свести к алгебраическим операциям и к вычислению конечного числа интегралов и производных от известных функций, то уравнение называетсяинтегрируемым в квадратурах. Класс таких уравнений относительно узок.

Для решения уравнений, которые не интегрируются в квадратурах, применяются приближенные или численные методы.

Задача теории обыкновенных дифференциальных уравнений — исследование общих свойств решений, развитие точных, асимптотических и численных методов интегрирования уравнений.

Обыкновенное уравнение первого порядка  называется однородным относительно x и y, если функция  является однородной степени 0:

.

Однородную функцию можно представить как функцию от :

.

Используем подстановку , а затем воспользуемся правилом произведения. Тогда дифференциальное уравнение  сводится к уравнению с разделяющимися переменными:

.

Определение линейного уравнения первого порядка

Дифференциальное уравнение вида

где a(x) и b(x) − непрерывные функции x, называтся линейным неоднородным дифференциальным уравнением первого порядка. Мы рассмотрим два метода решения указанных уравнений:

  • Использование интегрирующего множителя;

  • Метод вариации постоянной.

Использование интегрирующего множителя

Если линейное дифференциальное уравнение записано в стандартной форме:

то интегрирующий множитель определяется формулой:

Умножение левой части уравнения на интегрирующий множитель u(x) преобразует ее в производную произведения y(x)u(x).  Общее решение диффференциального уравнения выражается в виде:

где C − произвольная постоянная.

Уравнения с разделяющимися переменными

Дифференциальное уравнение первого порядка y' = f(x,y) называется уравнением с разделяющимися переменными, если функцию f(x,y) можно представить в виде произведения двух функций, зависящих только от x и y:

где p(x) и h(y) − непрерывные функции.  Рассматривая производную y' как отношение дифференциалов , перенесем dx в правую часть и разделим уравнение на h(y):

Разумеется, нужно убедиться, что h(y) ≠ 0. Если найдется число x0, при котором h(x0) = 0, то это число будет также являться решением дифференциального уравнения. Деление на h(y) приводит к потере указанного решения.  Обозначив , запишем уравнение в форме:

Теперь переменные разделены и мы можем проинтегрировать дифференциальное уравнение:

где C − постоянная интегрирования.  Вычисляя интегралы, получаем выражение

описывающее общее решение уравнения с разделяющимися переменными.

Систему ОДУ (2) часто удается представить в каноническом виде, в так называемой форме Коши

 (4)

где k= 1, 2, ..., n.

При формулировке задачи Коши система (4) дополняется начальными условиями (3). Для простоты рассмотрим задачу Коши для одного уравнения типа (4), а затем полученные алгоритмы обобщим на систему n уравнений

 (5)

В окрестности точки х0 функцию у(х) разложим в ряд Тейлора

 (6)

который можно применить для приближенного определения искомой функции у(х). В точке х0 + h при малых значениях h можно ограничиться двумя членами ряда (6), тогда

 (7)

где O(h2) - бесконечно малая величина порядка h2. Заменим производную у'(x0), входящую в формулу (7), на правую часть уравнения (5):

 (8)

Теперь приближенное решение в точке х1 = х0 + h можно вновь рассматривать как начальное условие и по формуле (8) найти значение искомой функции в следующей точке х2 = x1 + h1. В результате получен простейший алгоритм решения задачи Коши, который называется методом Эйлера, или методом ломаных. Последнее название связано с геометрической интерпретацией процесса (см. рис.); искомую функцию у(х) мы заменяем ломаной линией, представляющей собой отрезки касательных к этой функции в узлах

 Рис. Метод Эйлера

Формула (8) может быть получена из других соображений. Заменим производную в левой части уравнения (5) приближенным конечно-разностным отношением

Нетрудно видеть эквивалентность последнего выражения с алгоритмом Эйлера (8).

На каждом шаге метода Эйлера решение у(х) определяется с погрешностью за счет отбрасывания членов ряда Тейлора, пропорциональных h в степени выше первой. Это означает, что метод Эйлера имеет второй порядок локальной погрешности. Доказано, что глобальная погрешность метода имеет первый порядок; и при постоянном шаге h для оценки погрешности применима первая формула Рунге

, (9)

где yh(x) - приближенное решение дифференциального уравнения в точке х, полученное с шагом h; уkh(х) - приближенное решение того же уравнения с шагом kh; р - порядок метода.

Формула (9) позволяет опытным путем определить шаг h, обеспечивающий требуемую точность решения у(х). Так же, как и при вычислении определенных интегралов, можно осуществлять автоматическое изменение шага в процессе интегрирования дифференциального уравнения.

Для уточнения решения применима вторая формула Рунге

 (10)

Формула Эйлера (8) обобщается для систем ОДУ, записанных в форме Коши (4) с начальными условиями (3)

 (11)

Представленная ниже программа реализует метод Эйлера решения задачи Коши для системы дифференциальных уравнений. Функция уравнения задаётся подпрограммой f(x), точное решение – подпрограммой ft(x). Пользователь вводит интервал поиска решения [A,B], число шагов N, начальное значение Y(0). Программа выводит найденное решение и оценивает его максимальную погрешность.

Соседние файлы в папке HaoZip RAR Архив_1