- •Курс общей физики (лекции)
- •Раздел III
- •Москва, 2005 Лекция 1 «Общие представления о волновых процессах»
- •Введение. Волновые процессы
- •Гармонические колебания
- •Скалярные и векторные волны
- •Кинематические характеристики плоской скалярной волны.
- •Геометрические типы гармонических волн
- •Эффект Доплера
- •Итог лекции 1
- •Лекция 2 «Акустические волны»
- •Скорость звука в средах
- •Продольные волны в твёрдом теле
- •Упругая волна в идеальном газе
- •Энергетические характеристики упругих волн. Вектор Умова
- •Поведение продольной волны на границе двух сред
- •Лекция 3 «Электромагнитные волны»
- •Уравнения Максвелла и их физический смысл
- •Электромагнитные волны. Свойства электромагнитных волн
- •Энергетические характеристики электромагнитных волн. Вектор Пойнтинга
- •Излучение электромагнитных волн
- •Излучение точечного заряда
- •Излучение элементарного вибратора (Диполь Герца)
- •Мощность излучения диполя
- •Диаграмма направленности излучающего диполя
- •Итог лекции 3.
- •Лекция 4 «Интерференция волн»
- •1.Суперпозиция двух сферических гармонических синфазных волн
- •Особенности суперпозиции световых волн. Когерентность
- •Лекция 5 «Интерференция световых волн»
- •Краткий обзор предыдущей лекции
- •Сложение волн на «большом» расстоянии от источников
- •3.1 Зеркала Френеля (1816 г.) (рис. 5.3)
- •Бипризма Френеля (рис. 5.5)
- •Интерференционные полосы равной толщины (кольца Ньютона)
- •Итог лекции 5
- •Лекция 6 «Интерференция волн»
- •Краткий обзор предыдущих лекций. Метод векторных диаграмм
- •Многолучевая интерференция
- •Волновая область. Волновой параметр
- •Лекция 7 «Дифракция волн»
- •Дифракция волн. Дифракция Френеля и дифракция Фраунгофера
- •Дифракция в «сходящихся - расходящихся» пучках света. Этот вид дифракции получил название «дифракция Френеля» (рис. 7.2).
- •2.Принцип Гюйгенса-Френеля
- •Метод векторных диаграмм. Зоны Френеля
- •Дифракция от круглого отверстия
- •Зонные пластинки. Фокусировка
- •Лекция 8 «Дифракция волн»
- •Дифракция Фраунгофера от длинной щели
- •Интенсивность дифракционной картины
- •Критерий типа дифракции
- •Лекция 9 «Дифракционная решётка как спектральный прибор»
- •Краткий обзор предыдущих лекций
- •Критерии типа дифракции (см. Лекцию №8).
- •Дифракция Фраунгофера от щели (см. Лекцию №8).
- •Многолучевая интерференция (см. Лекцию №6).
- •Дифракционная решётка как спектральный прибор
- •Критерий Рэлея. Разрешающая сила дифракционной решётки
- •Лекция 10 «Экспериментальные основы квантовой механики»
- •Равновесное тепловое излучение
- •Тепловое излучение абсолютно черного тела
- •Классические теории Вина и Рэлея-Джинса. «Ультрафиолетовая катастрофа».
- •Гипотеза Планка
- •Фотоэффект. Уравнение Эйнштейна
- •Опыты Столетова
- •Эксперименты Ленарда и Томсона
- •Уравнение Эйнштейна для внешнего фотоэффекта
- •Энергия фотона:
- •3. Фотоэффект. Уравнение Эйнштейна.
- •Лекция 11 «Экспериментальные основы квантовой теории»
- •Энергия и импульс фотона и релятивистской частицы
- •Эффект Комптона
- •Корпускулярно-волновой дуализм излучения
- •Лекция 12 «Боровская теория атома водорода»
- •2. Спектр атома водорода
- •Опыт по рассеянию α-частиц. Планетарная модель атома Резерфорда
- •Постулаты Бора (1913)
- •Опыт Франка и Герца (1914)
- •Постулаты Бора:
- •Лекция 13 «Волновые свойства микрочастиц»
- •Волновые свойства вещества. Гипотеза де-Бройля
- •Экспериментальное подтверждение гипотезы де-Бройля
- •Опыт Дэвиссона –Джермера (1926)
- •Волновые свойства микрочастиц. Принцип неопределенности Гейзенберга
- •Уравнение Шредингера
- •Лекция 14. «Уравнение Шредингера»
- •Уравнение Шредингера. Волновая функция и её физический смысл
- •«Квантование как проблема собственных значений»
- •Частица в бесконечно глубокой одномерной потенциальной яме
- •Туннельный эффект
Опыт Франка и Герца (1914)
Схема экспериментальной установки, на которой работали Франк и Герц, представлена на рис. 12.7.

Рис. 12.7

Рис. 12.8
В стеклянной колбе, содержащей пары ртути при давлении порядка 1 мм рт.ст., смонтированы анод А, подогреваемый катод К и сетка С.
С помощью потенциометра Пможно менять напряжение между катодом и сеткой. Это напряжение является ускоряющим для термоэлектронов, покидающих катод.
Важный момент. Между анодом и сеткой создана тормозящая разность потенциалов порядка 0.5 В, то есть на анод подан отрицательный потенциал относительно сетки.
На рисунке 12.8 можно видеть как меняется анодный ток в этой установке при монотонномувеличении ускоряющего напряжения между сеткой и катодом.
Такая необычная зависимость анодного тока от напряжения связана с дискретностью энергетических уровней атомов ртути.
Атом ртути может поглощать порции энергии только вполне определенных величин
∆E1 = E2 – E1, ∆E2 = E3 – E1 и так далее.
Термоэлектроны, появившиеся на катоде устремляются к сетке. В своем движении они сталкиваются с атомами ртути, но до тех пор, пока кинетическая энергия электронов меньше величины ∆Е1, эти взаимодействия носят упругий характер. В результате таких соударений электроны практически не теряют энергии. Достигнув сетки, электроны проникают в область между сеткой и анодом и, преодолев тормозящее действие местного поля, достигают анод. Так замыкается цепь и обеспечивается течение анодного тока.
С увеличением ускоряющего напряжения, растет число электронов, достигающих анод, и растет анодный ток. Так продолжается до тех по, пока растущая энергия электронов не достигнет значения ∆Е1. Теперь взаимодействие электрона с атомом ртути будет носить неупругий характер.
Электрон передаст свою энергию атому ртути, а оставшейся энергии оказывается недостаточно, чтобы преодолеть тормозящее поле между сеткой и анодом. Электрон этим полем отбрасывается назад к сетке. Это первое падение анодного тока, после напряжения U = 4.9 В.
При дальнейшем увеличении ускоряющего напряжения упомянутая энергия ∆Е1будет достигаться электронами не у самой сетки, а раньше, ближе к катоду. Это означает, что после неупругого взаимодействия с атомом ртути, электрон имеет возможность на оставшемся участке до сетки увеличить свою энергию настолько, чтобы преодолеть тормозящее напряжение.
Вновь можно наблюдать рост тока с увеличением напряжения.
При ускоряющем напряжении больше U> 9.8 В, электроны на пути от катода к сетке дважды претерпевают неупругое взаимодействие с атомами ртути. И второе из двух соударений – у самой сетки.
Вновь электроны теряют всю свою энергию на пороге тормозящего поля, и будут отброшены им назад к сетке.
Такая избирательность атомов в отношении к порциям энергии, которые ими могут быть восприняты, является прямым доказательством одного из главных положений квантовой теории - дискретности энергетических уровней атома.
Итог лекции 12
1. Спектр излучения атомарного водорода. Обобщенная формула Ьальмера:
.
Постулаты Бора:
,m= 1, 2, 3,...
.
