
- •Курс общей физики (лекции)
- •Раздел III
- •Москва, 2005 Лекция 1 «Общие представления о волновых процессах»
- •Введение. Волновые процессы
- •Гармонические колебания
- •Скалярные и векторные волны
- •Кинематические характеристики плоской скалярной волны.
- •Геометрические типы гармонических волн
- •Эффект Доплера
- •Итог лекции 1
- •Лекция 2 «Акустические волны»
- •Скорость звука в средах
- •Продольные волны в твёрдом теле
- •Упругая волна в идеальном газе
- •Энергетические характеристики упругих волн. Вектор Умова
- •Поведение продольной волны на границе двух сред
- •Лекция 3 «Электромагнитные волны»
- •Уравнения Максвелла и их физический смысл
- •Электромагнитные волны. Свойства электромагнитных волн
- •Энергетические характеристики электромагнитных волн. Вектор Пойнтинга
- •Излучение электромагнитных волн
- •Излучение точечного заряда
- •Излучение элементарного вибратора (Диполь Герца)
- •Мощность излучения диполя
- •Диаграмма направленности излучающего диполя
- •Итог лекции 3.
- •Лекция 4 «Интерференция волн»
- •1.Суперпозиция двух сферических гармонических синфазных волн
- •Особенности суперпозиции световых волн. Когерентность
- •Лекция 5 «Интерференция световых волн»
- •Краткий обзор предыдущей лекции
- •Сложение волн на «большом» расстоянии от источников
- •3.1 Зеркала Френеля (1816 г.) (рис. 5.3)
- •Бипризма Френеля (рис. 5.5)
- •Интерференционные полосы равной толщины (кольца Ньютона)
- •Итог лекции 5
- •Лекция 6 «Интерференция волн»
- •Краткий обзор предыдущих лекций. Метод векторных диаграмм
- •Многолучевая интерференция
- •Волновая область. Волновой параметр
- •Лекция 7 «Дифракция волн»
- •Дифракция волн. Дифракция Френеля и дифракция Фраунгофера
- •Дифракция в «сходящихся - расходящихся» пучках света. Этот вид дифракции получил название «дифракция Френеля» (рис. 7.2).
- •2.Принцип Гюйгенса-Френеля
- •Метод векторных диаграмм. Зоны Френеля
- •Дифракция от круглого отверстия
- •Зонные пластинки. Фокусировка
- •Лекция 8 «Дифракция волн»
- •Дифракция Фраунгофера от длинной щели
- •Интенсивность дифракционной картины
- •Критерий типа дифракции
- •Лекция 9 «Дифракционная решётка как спектральный прибор»
- •Краткий обзор предыдущих лекций
- •Критерии типа дифракции (см. Лекцию №8).
- •Дифракция Фраунгофера от щели (см. Лекцию №8).
- •Многолучевая интерференция (см. Лекцию №6).
- •Дифракционная решётка как спектральный прибор
- •Критерий Рэлея. Разрешающая сила дифракционной решётки
- •Лекция 10 «Экспериментальные основы квантовой механики»
- •Равновесное тепловое излучение
- •Тепловое излучение абсолютно черного тела
- •Классические теории Вина и Рэлея-Джинса. «Ультрафиолетовая катастрофа».
- •Гипотеза Планка
- •Фотоэффект. Уравнение Эйнштейна
- •Опыты Столетова
- •Эксперименты Ленарда и Томсона
- •Уравнение Эйнштейна для внешнего фотоэффекта
- •Энергия фотона:
- •3. Фотоэффект. Уравнение Эйнштейна.
- •Лекция 11 «Экспериментальные основы квантовой теории»
- •Энергия и импульс фотона и релятивистской частицы
- •Эффект Комптона
- •Корпускулярно-волновой дуализм излучения
- •Лекция 12 «Боровская теория атома водорода»
- •2. Спектр атома водорода
- •Опыт по рассеянию α-частиц. Планетарная модель атома Резерфорда
- •Постулаты Бора (1913)
- •Опыт Франка и Герца (1914)
- •Постулаты Бора:
- •Лекция 13 «Волновые свойства микрочастиц»
- •Волновые свойства вещества. Гипотеза де-Бройля
- •Экспериментальное подтверждение гипотезы де-Бройля
- •Опыт Дэвиссона –Джермера (1926)
- •Волновые свойства микрочастиц. Принцип неопределенности Гейзенберга
- •Уравнение Шредингера
- •Лекция 14. «Уравнение Шредингера»
- •Уравнение Шредингера. Волновая функция и её физический смысл
- •«Квантование как проблема собственных значений»
- •Частица в бесконечно глубокой одномерной потенциальной яме
- •Туннельный эффект
Классические теории Вина и Рэлея-Джинса. «Ультрафиолетовая катастрофа».
Многие ученые пытались объяснить особенности излучения черного тела с позиций классической термодинамики. Опираясь на законы термодинамики, принцип равного распределения энергии по степеням свободы, применяя методы классической статической механики для стационарных волн, которые могли бы существовать в полости, Вин, Рэлей, Джинс и многие другие ученые пытались получить теоретическую формулу, описывающую известную экспериментальную функцию
Однако формула, например, полученная Вином, неплохо совпадающая с экспериментальными данными в высокочастотной области излучения, расходилась с экспериментом в низкочастотной части спектра.
Формула Рэлея-Джинса, напротив, подтверждалась в низкочастотной части спектра и уводила в бесконечность в высокочастотной области (рис. 10.4)
Рис. 10.4
Энергетическая светимость тела, вычисленная с использованием теоретической формулы Рэлея-Джинса, оказывается бесконечной.
Отсюда следует абсурдный вывод: плотность энергии в равновесной системе бесконечна!
Этот результат, получивший название ультрафиолетовой катастрофы, на самом деле означал катастрофу классической физики.
Гипотеза Планка
В 1889 году к теоретическому изучению излучения черного тела приступил Макс Планк. Ему удалось подобрать такую эмпирическую формулу, которая приводила к формуле Вина в области коротких волн и совпадала с законом Рэлея-Джинса в длинноволновой области.
.
(10.7)
Формула Планка позволяет вычислить интегральную светимость абсолютно черного тела. Это вычисление приводит к закону Стефана-Больцмана.
При этом постоянная Больцмана — σ, рассчитанная по формуле Планка, в точности совпадает с тем значением, которое дает эксперимент.
Формула Планка подтверждает и закон смещения Вина
И здесь постоянная «b» подтверждается экспериментом.
Найдя столь удачную формулу(10.7), Планк попытался объяснить физический смысл новой константы ħ, которую ему пришлось ввести в это математическое выражение.
Оказалось, что формула безукоризненно описывает излучение черного тела только в предположении, что каждый колеблющийся осциллятор, окруженный абсолютно поглощающей оболочкой, излучает энергию дискретно, то есть порциями – квантами.
Энергия такого кванта по Планку пропорциональна частоте:
.
(10.8)
Если согласиться с этой неслыханной гипотезой о порциальном излучении энергии, возникает новый вопрос: каков механизм распространения этих «порций энергии»?
Сохраняют ли кванты свою индивидуальность или каждый элемент рассеивается в пространстве, превращаясь в электромагнитную волну?
Первое предположение — об индивидуальности квантов — несовместимо с классической волновой теорией оптики и теплового излучения.
Опасаясь отбрасывать волновую теорию, которая на протяжении целого века ни у кого не вызывала никаких сомнений, Планк избрал второе из двух объяснений. В первоначальной форме его теория предполагала испускание излучения дискретным, в виде квантов, а само излучение – непрерывным.
«Когда думаешь о полном опытном подтверждении, которое получила электродинамика Максвелла, - писал Планк в 1911 году,- о необычайных трудностях, с которыми придется столкнуться всем теориям при объяснении электрических и магнитных явлений, если они откажутся от этой электродинамики, инстинктивно испытываешь неприязнь ко всякой попытке поколебать её фундамент».