Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
VOPROS_41-50_FIZIka.doc
Скачиваний:
76
Добавлен:
11.02.2015
Размер:
424.45 Кб
Скачать

Вопрос 48

Принцип неопределённости Гейзенбе́рга (или Га́йзенберга) в квантовой механике — фундаментальное неравенство (соотношение неопределённостей), устанавливающее предел точности одновременного определения пары характеризующих систему квантовых наблюдаемых, описываемых некоммутирующими операторами (например, координаты и импульса, тока и напряжения, электрического и магнитного поля). Соотношение неопределённостей[* 1] задаёт нижний предел для произведения среднеквадратичных отклонений пары квантовых наблюдаемых. Принцип неопределённости, открытый Вернером Гейзенбергом в 1927 г., является одним из краеугольных камней квантовой механики.

Обобщённый принцип неопределённости[править | править исходный текст]

Принцип неопределённости не относится только к координате и импульсу (как он был впервые предложен Гейзенбергом). В своей общей форме он применим к каждой паре сопряжённых переменных. В общем случае, и в отличие от случая координаты и импульса, обсуждённого выше, нижняя граница произведения «неопределённостей» двух сопряжённых переменных зависит от состояния системы. Принцип неопределённости становится тогда теоремой в теории операторов, которая будет приведена далее.

Теорема. Для любых самосопряжённых операторов:  и , и любого элемента  из  такого, что  и  оба определены (то есть, в частности,  и  также определены), имеем:

Это прямое следствие неравенства Коши — Буняковского.

Следовательно, верна следующая общая форма принципа неопределённости, впервые выведенная в 1930 г. Говардом Перси Робертсоном и (независимо) Эрвином Шрёдингером:

Это неравенство называют соотношением Робертсона — Шрёдингера.

Оператор  называют коммутатором  и  и обозначают как . Он определен для тех , для которых определены оба  и .

Из соотношения Робертсона — Шрёдингера немедленно следует соотношение неопределённости Гейзенберга:

Предположим,  и  — две физические величины, которые связаны с самосопряжёнными операторами. Если  и  определены, тогда:

,

где:

— среднее значение оператора величины  в состоянии  системы, и

— оператор стандартного отклонения величины  в состоянии  системы.

Приведённые выше определения среднего и стандартного отклонения формально определены исключительно в терминах теории операторов. Утверждение становится однако более значащим, как только мы заметим, что они являются фактически средним и стандартным отклонением измеренного распределения значений. См. квантовая статистическая механика.

То же самое может быть сделано не только для пары сопряжённых операторов (например координаты и импульса, или продолжительности и энергии), но вообще для любой пары Эрмитовых операторов. Существует отношение неопределённости между напряжённостью поля и числом частиц, которое приводит к явлению виртуальных частиц.

Возможно также существование двух некоммутирующих самосопряжённых операторов  и , которые имеют один и тот же собственный вектор . В этом случае  представляет собой чистое состояние, которое является одновременно измеримым для  и .

Вопрос 49

Квантовые числа nlm связаны определенными правилами квантования. Например, орбитальное квантовое число l может принимать целочисленные значения от 0 до (n – 1). Магнитное квантовое число m может принимать любые целочисленные значения в интервале ±l. Таким образом, каждому значению главного квантового числа n, определяющему энергетическое состояние атома, соответствует целый ряд комбинаций квантовых чисел l и m. Каждой такой комбинации соответствует определенное распределение вероятности |Ψ|2 обнаружения электрона в различных точках пространства («электронное облако»).

Состояния, в которых орбитальное квантовое число l = 0, описываются сферически симметричными распределениями вероятности. Они называются s-состояниями (1s, 2s, ..., ns, ...). При значениях l > 0 сферическая симметрия электронного облака нарушается. Состояния с l = 1 называются p-состояниями, с l = 2 – d-состояниями и т. д.

В основе боровской теории атома лежат два основных положения (постулата):

1. Электроны могут двигаться в атоме только по определенным орбитам, находясь на которых они, несмотря на наличие у них ускорения, не излучают.

Бор предположил, что произведение модуля импульса на радиус орбиты кратно постоянной Планка:

где n = 1,2,3,… это и есть правило квантования. С помощью правила квантования можно получить выражение для возможных радиусов орбит:

2. Атом излучает или поглащает квант электромагнитной энергии при переходе электрона из одного стационарного состояние в другое.

Радиусов допустимых (стационарных) орбит электрона в атоме водорода:

Ряд значений энергий стационарных состояний атома водорода

Соседние файлы в предмете Физика