Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
VOPROS_31-40_FIZIka.doc
Скачиваний:
78
Добавлен:
11.02.2015
Размер:
495.1 Кб
Скачать

Вопрос 38

Опыт Франка — Герца — опыт, явившийся экспериментальным доказательством дискретности внутренней энергии атома. Поставлен в 1913 Дж. Франком и Г. Герцем.

На рисунке приведена схема опыта. К катоду К и сетке C1 электровакуумной трубки, наполненной парами Hg (ртути), прикладывается разность потенциалов V, ускоряющая электроны, и снимается вольт-амперная характеристика. К сетке C2 и аноду А прикладывается замедляющая разность потенциалов. Ускоренные в области I электроны испытывают соударения с атомами Hg в области II. Если энергия электронов после соударения достаточна для преодоления замедляющего потенциала в области III, то они попадут на анод. Следовательно, показания гальванометра Г зависят от потери электронами энергии при ударе.

В опыте наблюдался монотонный рост тока I при увеличении ускоряющего напряжения вплоть до 4,9 В, то есть электроны с энергией Е < 4,9 эВ испытывали упругие соударения с атомами Hg, и внутренняя энергия атомов не менялась. При значении V = 4,9 В (и кратных ему значениях 9,8 В, 14,7 В) появлялись резкие спады тока. Это определённым образом указывало на то, что при этих значениях V соударения электронов с атомами носят неупругий характер, то есть энергия электронов достаточна для возбуждения атомов Hg. При кратных 4,9 эВ значениях энергии электроны могут испытывать неупругие столкновения несколько раз.

Таким образом, опыт Франка — Герца показал, что спектр поглощаемой атомом энергии не непрерывен, а дискретен, минимальная порция (квант электромагнитного поля), которую может поглотить атом Hg, равна 4,9 эВ. Значение длины волны λ = 253,7 нм свечения паров Hg, возникавшее при V > 4,9 В, оказалось в соответствии со вторым постулатом Бора

,

где E0 и E1 — энергии основного и возбужденного уровней энергии. В опыте Франка — Герца E0 — E1 = 4,9 эВ.

Артур Комптон, повторив (1922—1923) опыт Франка — Герца, обнаружил, что при V > 4,9 В пары Hg начинают испускать свет с частотой

ν = ΔE/h,

где ΔE = 4,9 эВ (h — постоянная Планка). Таким образом, возбуждённые электронным ударом атомы Hg испускают фотон с энергией 4,9 эВ и возвращаются в основное состояние.

В 1925 г. Густав Герц и Джеймс Франк были награждены Нобелевской премией за открытие законов соударения электрона с атомом.

Вопрос 39

Наличие у частицы волновых свойств приводит к тому, что в квантовой физике ей сопоставляется волновая функция (x,y,z,t).     Физический смысл волновой функции. Величина |(x,y,z,t)|2dV пропорциональна вероятности того, что частица будет обнаружена в момент времени t в объеме dV в окрестности точки (x,y,z).     Волновая функция системы невзаимодействующих частиц (r1,r2,...rn,t) связана с одночастичными волновыми функциями i(ri,t) соотношением

(r1,r2,...rn,t) = 1(r1,t)·2(r2,t)·...n(rn,t).

Свободное движение частицы

    Волновая функция свободно движущейся частицы с энергией E и импульсом p имеет вид

 (r,t) = Aexp[i(kr - t)] = Aexp[i(pr - Et)/] .

    Константа A может быть найдена из условия нормировки волновой функции

A = (2)-3/2.

Т.е. в тех случаях, когда частица находится в области пространства, где действующие на нее силы равны нулю (свободное движение), энергия частицы может принимать любые значения. Энергетический спектр свободно движущейся частицы непрерывный.

Частица в прямоугольной яме с бесконечными стенками

    Если область пространства, в которой может находится частица ограничена, возникает дискретный спектр энергий. Рассмотрим это на примере одномерной прямоугольной ямы c бесконечными стенками

Частица всегда находится в области 0 < x < a. Вне ее  = 0. Запишем уравнение Шредингера для одномерного случая

(1)

Его решение

= Asin kx + Bcos kx,

(2)

где k = (2mE/2)1/2. Из граничных условий и условий непрерывности имеем

Asin ka = 0.

(3)

Из (3) получим

ka = n, n = 1, 2, ...,

(4)

т.е. внутри ямы устанавливаются стоячие волны, а энергия состояний принимает дискретные значения

En = p2/2m = k2/2m = 22n2/(2ma2).

(5)

Энергии состояний растут квадратично от n.

Рис. 1

Каждому значению энергии соответствует волновая функция, которую с учетом условия нормировки

(6)

можно записать в виде

n = (2/a)1/2sin (nx/a)

(7)

(см. рис.1). В отличие от классической частицы, квантовая частица в прямоугольной яме не может иметь энергию E < 22/(2ma2).

Частица в потенциале гармонического осциллятора

    Потенциал гармонического осциллятора (так же, как и в предыдушем примере рассмотрим одномерный случай)

n = kx2/2 = m0x2/2.

(8)

где 0= (k/m)1/2 - собственная частота колебаний гармоничекого осциллятора. Решение уравнения Шредингера для этого потенциала можно записать в виде

n = hn(x)e-b(x),

(9)

где hn(x) - полиномы степени n, b(x) = (km)1/2x2/2. Спектр значений энергий имеет вид

En = 0(n + 1/2),     n = 0, 1, ...

(10)

    Энергетический спектр гармонического осциллятора эквидистантный - уровни находятся на одинаковом расстоянии друг от друга.

Нормированность волновой функции[править | править исходный текст]

Волновая функция  по своему смыслу должна удовлетворять так называемому условию нормировки, например, в координатном представлении имеющему вид:

Это условие выражает тот факт, что вероятность обнаружить частицу с данной волновой функцией где-либо во всём пространстве равна единице. В общем случае интегрирование должно производиться по всем переменным, от которых зависит волновая функция в данном представлении.

Соседние файлы в предмете Физика