
- •Министерство образования и науки Российской Федерации
- •Оглавление
- •Предисловие
- •Введение
- •Глава 1. Древесина и пластмассы - строительные материалы
- •1.1 Достоинства и недостатки древесины
- •1.2 Строение древесины и физические свойства
- •1.3 Механические свойства древесины
- •1. Древесина является анизотропным материалом.
- •3. На прочность древесины влияет ее влажность
- •4. На прочность древесины оказывает влияние температура
- •1.4. Работа древесины на растяжение, сжатие и поперечный изгиб
- •Растяжение
- •Поперечный изгиб
- •Скалывание
- •1.5. Строительная фанера. Пиломатериалы
- •Пиломатериалы
- •Глава 2. Расчет и проектирование элементов деревянных конструкций
- •2.1. Основы расчета по предельным состояниям
- •2.2. Предельные состояния и расчёт центрально-растянутых стержней
- •2.3. Предельные состояния и расчёт центрально-сжатых стержней
- •2.4. Предельные состояния и расчет изгибаемых элементов
- •2.5. Внецентренно - растянутые и растянуто - изогнутые стержни
- •2.6. Внецентренно-сжатые и сжато-изогнутые стержни
- •Глава 3. Соединение элементов деревянных конструкций
- •3.1. Общие сведения
- •3.2. Соединения на вырубках
- •3.3. Соединения на шпонках
- •3.5. Соединения на нагелях
- •3.6. Соединения на растянутых связях
- •3.7. Соединения на пластинчатых нагелях
- •3.8. Клеевые соединения
- •Глава 4. Строительные конструкции из древесины
- •4.1. Плоские сплошные деревянные конструкции. Общие сведения
- •4.2. Балки сплошного сечения усиленные подбалками
- •4.3. Консольно-балочные и неразрезные системы прогонов
- •4.4. Плоские сплошные деревянные конструкции на упруго-податлевых связях
- •4.5. Расчет стоек на продольный изгиб (центральное сжатие)
- •4.6. Балки дервягина (на пластинчатых панелях)
- •4.7. Расчет и конструирование клееных балок
- •Дощатоклееные балки
- •4.8. Конструирование и расчёт арок
- •4.9. Плоские сквозные конструкции. Общие сведения
- •4.10. Нижние пояса. Выбор материала.
- •4.11. Верхние пояса сквозных конструкций.
- •5. Заключение
- •Список источников
1.2 Строение древесины и физические свойства
В поперечном сечении ствола древесины хвойных пород (сосна, ель) можно рассмотреть несколько характерных слоев (рис. 1.1).
Наружный слой состоит из коры - 1 и луба - 2. Под лубом находится тонкий слой камбия. Назначение луба в растущем дереве - проводить вниз по стволу образующиеся в листьях питательные органические вещества.
Рис.
1.1. Строение древесины в поперечном
разрезе:
1
- кора; 2 - луб; 3 - камбий; 4 - заболонь;
5
- ядро; 6 – сердцевина.
В поперечном разрезе основную часть занимают заболонь и ядро. Заболонь состоит из молодых клеток, ядро - полностью из отмерших клеток. У деревьев всех пород в раннем возрасте древесина состоит только из заболони, и лишь с течением времени происходит отмирание живых клеток, сопровождающееся обычно потемнением.
В период весны, когда в стволе появляется много сока, камбий развивает большую деятельность, откладывая во внутреннюю часть значительное количество крупных клеток. Летом по мере уменьшения количества питательных соков активность камбия замедляется, и откладывается меньшее количество клеток и меньших размеров. В зимнее время жизнедеятельность камбия затихает, и рост дерева прекращается. Откладывание весенней и летней частей древесины, периодически происходящее из года в год, является причиной образования годичных слоев (колец). Годичный слой состоит из светлого слоя древесины (ранняя древесина), обращенного в сторону сердцевины, и более темного, плотного, летней древесины, обращенного к коре (поздняя древесина).
Механическую функцию в древесине выполняют, в первую очередь, прозенхимные клетки - трахеиды, которые, главным образом, расположены вертикально. Стыкование трахеид в продольном направлении осуществляется в процессе роста. Они своими заостренными концами врастают между собой и в другие анатомические элементы, так называемые "паренхимные клетки", имеющие одинаковые размеры во всех трех осевых направлениях. Эти клетки входят в состав "сердцевинных лучей", которые пронизывают в перпендикулярном направлении несколько годичных слоев.
Трахеиды составляют 90% общего объема древесины, и в 1см3 их приблизительно размещается 420000 шт. Трахеид ранней части годичного слоя обладает тонкими стенками (2-3 мкм) и большими внутренними полостями, а трахеиды поздней части годичного слоя имеют более толстые стенки (5-7 мкм) и меньшие полости. Длина трахеид 2-5 мм, размер поперечного сечения в 50-60 раз меньше длины.
Для более полного представления о строении древесины рассматривается три разреза ствола: поперечный, радиальный и тангентальный (рис. 1.2).
Древесина лиственных пород имеет несколько отличную от хвойных пород структуру. Спиральное направление стенок клеток древесины лиственных пород приводит к большому короблению и растрескиванию пиломатериала при сушке, ухудшению гвоздимости. Наличие этих недостатков и малая стойкость к загниванию ограничивает применение лиственных пород для деревянных конструкций. Более высокие прочностные показатели древесины твердых лиственных пород реализуются путем использования их для изготовления соединительных элементов (нагели, шпонки, накладки), а также опорных антисептированных деталей.
Физические свойства древесины
Плотность. Поскольку влага составляет значительную часть массы древесины, то величина плотности устанавливается при определенной влажности. С увеличением влажности плотность увеличивается и, поэтому для расчетов при определении постоянных нагрузок используют усредненные показатели, представленные в нормах [3].
Для конструкций, эксплуатируемых в условиях, когда равновесная влажность не превышает 12% (отапливаемые и неотапливаемые помещения с относительной влажностью до 75%), плотность сосны и ели составляет 500 кг/м3, а лиственницы 650 кг/м3.
Рис.
1.2. Основные разрезы ствола:
1
- осевой (П); 2 - радиальный (Р);
3
-тангентальный (Т).
Для конструкций, эксплуатируемых на открытом воздухе или в закрытых помещениях с высокой влажностью более 75%, плотность сосны и ели составляет 600 кг/м3, а лиственницы 800 кг/м3.
Теплопроводность древесины зависит от плотности, влажности и направления волокон. При равной плотности и влажности теплопроводность поперек волокон в 2,5-3 раза меньше, чем вдоль волокон. Коэффициент теплопроводности поперек волокон при стандартной влажности 12% более чем в 2 раза ниже, чем при влажности равной 30%. Эти показатели объясняются трубчатым строением волокон древесины.
Температурное расширение. Коэффициент линейного расширения поперек волокон пропорционален плотности древесины, и в 7 - 10 раз больше коэффициентов расширения вдоль волокон. Это объясняется тем, что при нагревании древесина теряет влагу и меняет свои объемы.
В практике проектирования температурные деформации практически не рассматриваются, т. к. коэффициент линейного расширения вдоль волокон незначителен.