
- •Введение
- •1. Основная часть
- •1.1 Краткая характеристика Кислородно-Конверторного Цеха оао «ммк»
- •1.2 Технология производства
- •1.3 Характеристика механического оборудования
- •1.4 Характеристика электрического оборудования
- •1.5 Требования к электроприводу механизма качания кристаллизатора
- •1.6 Расчёт мощности и выбор двигателя
- •1.6.1 Расчёт статических моментов
- •1.6.2 Предварительный выбор двигателя
- •1.6.3 Проверка двигателя на нагрев и перегрузочную способность
- •1.7 Выбор основного силового оборудования
- •1.7.1 Выбор тиристорного преобразователя
- •1.7.2 Выбор токоограничивающего реактора
- •1.7.3 Расчёт индуктивности сглаживающего дросселя
- •1.7.4 Выбор тиристорного возбудителя:
- •1.7.5 Выбор токоограничивающего реактора цепи возбуждения
- •1.8 Системы защиты силовой части электропривода
- •1.8.1 Разновидности и причины аварийных режимов в реверсивном тиристорном преобразователе
- •1.8.2 Защита от перегрузки и коротких замыканий
- •1.8.3 Защита от перенапряжений
- •1.8.4 Защита от обрыва поля
- •1.8.5 Контроль изоляции
- •1.9 Разработка системы автоматического управления электроприводом качения кристаллизатора.
- •1.9.1.Основные параметры силовой части электропривода:
- •1.10 Выбор тахогенератора:
- •1.11 Построение системы автоматического управления
- •1.11.1 Принципы построения системы автоматического управления
- •1.11.2 Построение контура регулирования тока якоря
- •1.11.2.1 Оценка скорости нарастания якорного тока:
- •1.11.2.2. Оценка действия эдс двигателя в контуре тока
- •1.11.2.3. Разработка узла компенсации периодической составляющей статического тока нагрузки.
- •1.11.3. Построение контура регулирования скорости
- •1.11.3.1. Влияние момента нагрузки на статические характеристики. Реализация требуемой статической точности:
- •1.11.4.Построение контура регулирования тока возбуждения
- •1.12. Реализация системы управления электропривода качания кристаллизатора
- •1.12.1 Задатчик интенсивности скорости
- •1.12.2 Регулятор скорости
- •1.12.3 Регулятор деления нагрузок и ограничение якорного тока
- •2. Безопасность и экологичность
- •2.1. Характеристика электромашинного помещения с точки зрения опасностей и вредностей
- •2.2. Обеспечение безопасности труда
- •2.2.1. Нормы испытания двигателей постоянного тока
- •2.3. Охрана окружающей среды
- •2.4. Предупреждение и ликвидация чрезвычайных ситуаций
- •3. Анализ технико-экономическихпоказателей цеха
- •3.1. Организационно-правовая форма оао ммк
- •3.2 Анализ рынков сбыта оао ммк
- •3.3. Анализ технико-экономических показателей работы ккц
- •3.4 Расчёт производственной программы ккц
- •3.4.1 Расчёт сметы капитальных затрат
- •3.4.2 Расчёт стоимости приобретённого и демонтируемого оборудования
- •3.4.3 Расчёт затрат на монтаж оборудования
- •3.4.4 Расчёт величин транспортных, заготовительно-складских, затрат на запчасти, расходов на комплектацию оборудования и затрат на проектирование
- •3.4.5 Расчет затрат на демонтаж оборудования, величины остаточной стоимости и ликвидационной стоимости
- •3.5 Расчёт затрат на эксплуатацию системы электропривода
- •3.5.1 Расчет потерь электроэнергии (Эi)
- •3.5.2 Расчет амортизационных отчислений (Ai)
- •3.5.3 Расчет затрат на ремонты и обслуживание электрооборудования
- •3.6 Расчёт себестоимости продукции для реконструкции
- •3.7. Расчёт показателей прибыли предприятия
- •3.8 Организация и планирование ремонтов оборудования
- •3.8.1 Расчет трудоемкости ремонтных работ
- •3.8.2 Расчёт численности ремонтного персонала
- •3.9 Оценка экономической эффективности реконструкции
- •3.9.1 Метод чистой текущей стоимости
- •3.9.2 Метод внутренней нормы прибыли
- •3.9.3 Дисконтный метод окупаемости проекта
- •3.10 Сводная экономическая характеристика
- •Заключение
- •Список использованных источников
- •Ведомость дипломного проекта
Введение
Непрерывная разливка стали, как метод получения литых слябов начала широко применяться в нашей стране и в других странах более сорока лет назад. За этот период машины непрерывной разливки стали постоянно совершенствовались, и новый технологический процесс превратился в одно из важнейших звеньев металлургического производства, в значительной степени определяющей его эффективность и качество всей металлопродукции 1.
Широкое внедрение машин непрерывного литья заготовок (МНЛЗ) обусловливается крупными технико-экономическими преимуществами нового метода получения заготовок для листовых, сортовых, трубных и некоторых других станов. При разливке стали на МНЛЗ увеличивается выход годного проката на 10-15%, снижается его себестоимость, повышается производительность труда. Значительный экономический эффект даёт сокращение капитальных затрат на строительство металлургического завода, так как из его состава исключается всё хозяйство, связанное с разливкой стали в изложницы, обжимной стан (слябинг или блюминг), а в ряде случаев и непрерывно-заготовочный стан. Важным преимуществом непрерывной разливки является существенная экономия топливно-энергетических ресурсов за счёт исключения нагревательных колодцев и уменьшение в два раза удельного расхода электроэнергии на производство литых слябов и блюмов по сравнению с удельными расходами электроэнергии на обжимных станах.
Машины непрерывного литья заготовок позволили полностью механизировать и в значительной степени автоматизировать технологический процесс, коренным образом улучшить условия труда рабочих, занятых разливкой, сократить эксплуатационные расходы.
Современная МНЛЗ - сложный многомашинный агрегат с большим числом автоматизированных электроприводов, систем автоматического регулирования и контроля. Если в доменном и конвертерном производстве электропривод решает задачи перемещения материалов и оборудования и не влияет непосредственно на качество металла, а на станах горячей прокатки от точности работы систем электропривода зависят геометрические размеры проката и качество поверхности, то на МНЛЗ электроприводы главных механизмов существенно влияют также и на структуру литой заготовки.
Высокая надёжность работы электрооборудования МНЛЗ исключительно важна, поэтому требования к нему являются более жёсткими, чем к электрооборудованию прокатных станов. Небольшая неисправность, которая вызывает кратковременную задержку работы прокатного стана, на МНЛЗ может привести к потере всей плавки.
Сложность систем автоматизированного электропривода МНЛЗ обусловлена такими технологическими требованиями, как стабилизация скорости при нагрузке, пульсирующей с частотой 2 - 3 Гц, синхронизация вращения ряда электроприводов, слежение электропривода машины для газовой резки за перемещением слитка по двум координатам, автоматическая точная остановка электроприводов указанной машины и подъёмника заготовок, автоматическое регулирование уровня жидкой стали в кристаллизаторе воздействием на электропривод тянущих валков, ограничение первой и второй производных скорости главного электропривода для защиты от повреждения оболочки кристаллизующегося слитка.
Быстрый прогресс теории и практики электропривода МНЛЗ обусловлен как бурным развитием нового высокоэффективного технологического процесса, постоянным усложнением требований к главным приводам и системам их регулирования, так и общей научно-технической революцией в методах управления и средствах автоматизированного электропривода, начало которой совпало с широким применением МНЛЗ в чёрной металлургии.
Электроприводы основных и вспомогательных механизмов МНЛЗ (механизма качания кристаллизатора, зоны вторичного охлаждения, машины газовой резки, и др.) выполняются, как правило, по системе ТП-Д.