
- •Министерство образования и науки Российской Федерации
- •Глава 1. Общие сведения по геодезии
- •1.2. Роль геодезии в народном хозяйстве и обороне страны
- •1.3. Связь геодезии с другими научными дисциплинами
- •Глава 2. Сведения о фигуре земли и системах координат, применяемых в геодезии
- •2.2. Основная уровенная поверхность. Геоид. Эллипсоид.
- •2.3. Расчёт размеров участка сферической (уровенной) поверхности Земли для обобщения её до горизонтальной плоскости
- •2.4. Определение положения точек земной поверхности и применяемые для этого в геодезии системы координат
- •2.4.1. Метод проекций в геодезии. Величины, подлежащие измерению
- •2.4.2. Понятия о плане, карте, профиле линии местности
- •2.4.3. Астрономические и геодезические координаты.
- •2.4.4. Влияние кривизны Земли на определение высот точек
- •2.4.5. Проекция Гаусса – Крюгера*. Зональная и условная
- •2.4.6. Зональная система плоских прямоугольных координат
- •2.4.7. Условная система прямоугольных координат на плоскости
- •Глава 3. Ориентирование линий
- •3.5. Прямая и обратная геодезические задачи на плоскости
- •Глава 4. Элементы теории погрешностей геодезических измерений
- •4.1. Общие сведения об измерениях
- •4.2. Погрешности результатов измерений
- •4.3. Задачи теории погрешностей измерений
- •4.4. Равноточные измерения
- •4.4.1. Вычисление наиболее точного по вероятности значения
- •4.4.2. Оценка точности результатов ряда равноточных измерений.
- •4.4.3. Оценка точности функций измеренных величин
- •4.4.4. Оценка точности результатов ряда двойных равноточных измерений
- •4.4.5. Примеры оценки точности результатов равноточных измерений одной величины и функций независимо измеренных величин
- •4.5. Неравноточные измерения
- •4.5.1. Общая арифметическая середина. Веса результатов измерений
- •4.5.2. Средняя квадратическая погрешность единицы веса
- •4.5.3. Средняя квадратическая погрешность и вес общей арифметической середины
- •4.5.4. Вычисление весов функций независимых аргументов
- •4.5.5. Порядок математической обработки результатов неравноточных измерений
- •Глава 5. Измерения в геодезии
- •5.1.1. Принцип измерения горизонтального угла
- •Основные оси теодолита:
- •Основные плоскости теодолита:
- •5.1.2. Эксцентриситет алидады, исключение его влияния на отсчёт по лимбу
- •5.1.3 Уровни геодезических приборов
- •5.1.4. Зрительные трубы геодезических приборов
- •Основные характеристики зрительных труб
- •Параллакс сетки нитей, его устранение
- •5.1.5. Отсчетные устройства
- •5.1.6 Вертикальный круг.
- •Теория вертикального круга
- •5.1.7. Поверки и юстировка теодолита
- •5.1.8. Измерение горизонтальных углов
- •Измерение одиночного горизонтального угла способом приёмов
- •Собственно измерение горизонтального угла
- •Программа наблюдения направлений
- •Журнал измерения горизонтальных углов
- •Проложение теодолитных ходов
- •Глава 6. Нивелирование
- •6.1. Геометрическое нивелирование
- •Способ геометрического нивелирования - "из середины"
- •Способ геометрического нивелирования - "вперёд"
- •6.2. Поверки и юстировка нивелира с уровнем при трубе
- •6.3. Определение разности пяток нивелирных реек.
- •Глава 7. Линейные измерения
- •7.1. Измерение расстояний нитяным дальномером
- •7.2.1. Компарирование землемерной ленты (рулетки)
- •7.2.2. Обозначение отрезков линий на местности
- •7.2.3. Собственно измерение длин линий.
- •Глава 8. Геодезические работы при изыскании и строительстве автомобильных дорог
- •8.1. Понятие о трассе
- •8.2. Круговые и переходные кривые на трассе
- •8.3. Трассирование
- •8.4. Детальная разбивка кривых
- •8.5. Составление профилей
- •Литература
- •Оглавление
2.2. Основная уровенная поверхность. Геоид. Эллипсоид.
Как отмечалось выше, геодезические измерения связаны с направлением отвесной линии в тех точках, в которых они выполнялись. Значит, в каждой такой точке результаты измерений могут быть отнесены именно к той уровенной поверхности, которая проходит через данную точку. Но в таком случае результаты измерений на пунктах какой-либо геодезической сети окажутся отнесенными к различным уровенным поверхностям и замкнутых фигур в сети не образуется. В связи с этим возникает необходимость приведения результатов всех геодезических измерений прежде всего к некоторой данной или принятой в качестве общей исходной уровенной поверхности. В качестве основной уровенной поверхности Земли принята поверхность вод морей и океанов в их невозмущенном (спокойном) состоянии, мысленно продолженная под материками таким образом, что в любой ее точке она нормальна (перпендикулярна) отвесной линии в этой точке.
Тело, ограниченное основной уровенной поверхностью, называют геоидом. Вследствие неравномерного распределения масс внутри Земли поверхность геоида является весьма сложной и не выражается ни одной из рассматриваемых в математике поверхностей. Поэтому возникла необходимость замены поверхности геоида вспомогательной, возможно ближе подходящей к ней поверхности.
- 9 -
В
первом приближении уровенную поверхность
Земли можно заменить сферой определенного
радиуса. Но, наиболее близкой к геоиду
является фигура, образованная вращением
эллипса pe'p'e
(рис. 2.8) вокруг малой оси pp',
называемой полярной
осью. В связи с этим возникает необходимость
в определении размеров земного эллипсоида,
т.е. в определении его параметров: большой
полуоси a,
малой полуоси b,
сжатия
и данных, определяющих положение
эллипсоида относительно геоида.
Эллипсоид, наиболее близко подходящий
к фигуре геоида в целом, н
азываетсяобщим земным
эллипсоидом.
Эллипсоид,
c
определенными
параметрами, ориентирован-
ный в теле Земли и принятый для производства всех карто-графо - геодезических работ
в данной стране, называется референц - эллипсоидом.
В России для производства картографо - геодезических работ принят эллипсоид, определение размеров кото-рого и ориентирование в теле
Рис. 2.8. Общий Земной эллипсоид Земли выполнены под руковод-
ством Ф.Н. Красовского.
Эллипсоид Красовского имеет слеующие размеры:
;
a
=
В настоящее время за фигуру Земли принимается тело, ограниченное физической поверхностью Земли, т.е.: на cуше - поверхностью ее твердой оболочки, а на территории океанов и морей - их невозмущенной поверхностью. Изучение фигуры Земли производится путем определения положения точек местности в избранной системе координат на поверхности фигуры относимости, т.е. на поверхности референц-эллипсоида Красовского. Отметим, что при решении многих задач геодезии за фигуру Земли с достаточной для практических целей точностью принимается шар, равновеликий по объёму эллипсоиду Красовского, с радиусом R = 6371,11км. Для сравнительно небольших участков земной поверхности в качестве поверхности относимости можно принять горизонтальную плоскость. Горизонтальной называют плоскость, которая нормальна отвесной линии в данной точке поверхности Земли.
- 10 -