
- •Общая и неорганическая химия
- •Содержание
- •Общие методические указания
- •1. Кислотно-основные свойства веществ
- •1.1. Оксиды
- •Основные оксиды
- •Кислотные оксиды
- •Амфотерные оксиды
- •1.2. Кислоты
- •1.3. Основания
- •Амфотерные гидроксиды
- •1.4. Соли
- •Средние соли
- •Кислые соли
- •Основные соли
- •1.5. Генетическая связь между классами неорганических соединений
- •2. Химическая термодинамика
- •2.1. Энергетика химических процессов
- •2.2. Направление химических реакций
- •3. Химическая кинетика: скорость реакций и методы ее регулирования
- •4. Химическое и фазовые равновесия
- •5. Растворы. Дисперсные системы
- •5.1. Концентрация растворов
- •Пересчет концентраций растворов
- •5.2. Электролитическая диссоциация
- •Диссоциация кислот, оснований, солей
- •Реакции обмена в растворах электролитов Составление ионно-молекулярных уравнений
- •Составление молекулярных уравнений по ионно-молекулярным
- •5.3. Гидролиз солей Ионное произведение воды. Водородный показатель
- •Типы гидролиза солей
- •Влияние различных факторов на гидролиз солей
- •5.4. Произведение растворимости
- •Вычисление произведения растворимости малорастворимого электролита
- •Вычисление концентрации ионов и растворимости малорастворимого электролита в его насыщенном растворе
- •Условия образования осадков
- •6. Периодическая система элементов. Строение атома
- •Периодическая система химических элементов д.И.Менделеева
- •Взаимосвязь электронного строения атома со свойствами простых и сложных веществ. Комплементарность
- •7. Химическая связь. Комплексные соединения
- •Устойчивость комплексных соединений
- •8. Окислительно-восстановительные свойства веществ
- •Порядок составления уравнений окислительно-восстановительных реакций
- •9. Электрохимические системы
- •9.1. Электродный потенциал. Ряд напряжений. Гальванический элемент
- •9.2. Электролиз. Законы Фарадея
- •Катодные процессы
- •Анодные процессы
- •Законы электролиза
- •9.3. Коррозия металлов
- •Приложение
- •Библиографический список
9.3. Коррозия металлов
Коррозия – это самопроизвольный процесс разрушения металлов под действием окружающей среды.
По механизму протекания коррозионного процесса различают химическую и электрохимическую коррозию.
Химическая коррозия – это разрушение металла в результате химического взаимодействия с окружающей средой. Она характерна для сред, не проводящих электрический ток. По условиям протекания коррозионного процесса различают: а) газовую коррозию – взаимодействие металла при высоких температурах с активным газообразными средами O2, H2S, SO2, галогены и др.; б) коррозия в неэлектролитах – агрессивных органических жидкостях, таких, как нефть, нефтепродукты и др. Химическая коррозия встречается сравнительно редко и скорость ее невелика.
Электрохимическая коррозия – это разрушение металла под действием окружающей среды в результате возникновения гальванических пар. Множество микрогальванических пар возникает при контакте различных металлов в среде любого электролита, при наличии примесей в металле, при контакте металла с раствором электролита с различной концентрацией в разных точках раствора, при неоднородных механических напряжениях металла.
При электрохимической коррозии процесс взаимодействия металла с окислителем окружающей среды включает два взаимосвязанных процесса:
а) анодное окисление более активного металла:
Me0
- n
Men+
б) катодное восстановление окислителя окружающей среды:
- в кислой среде на поверхности катода будут восстанавливаться ионы Н+ и выделяться водород:
2Н+
+ 2
Н2
- в нейтральной и щелочной средах на поверхности катода будет восстанавливаться молекулярный кислород с образованием гидроксид-ионов:
О2
+ 2Н2О
+ 4
4ОН–
Кроме анодных и катодных реакций при электрохимической коррозии происходит длвижение электронов в металле с анодных участков на катодные и движение ионов в электролите. Электролитами могут быть растворы солей, кислот и оснований, морская вода, почвенная вода, вода атмосферы, содержащая CO2, SO2, O2 и другие газы.
Для защиты металлов от коррозии используют различные методы: 1) защитные покрытия (металлические и неметаллические); 2) электрохимическую защиту; 3) легирование металлов; 4) изменение свойств коррозионной среды.
Пример. Хром находится в контакте с медью. Какой из металлов будет окисляться при коррозии? Приведите схемы электрохимической коррозии этой пары металлов в кислой среде (HCl) и атмосфере влажного воздуха.
Решение. Исходя из положения металлов в ряду стандартных электродных потенциалов, хром более активный металл и в образующейся гальванической паре будет анодом, а медь - катодом. Хром будет окисляться, а на поверхности меди в кислой среде будет выделяться водород, в атмосферной среде – гидроксид-ионы. Ионы Cr3+, образующиеся в результате коррозии хрома, в кислой среде образуют с ионами Cl– хлорид хрома CrCl3, в атмосфере – гидроксид хрома Cr(OH)3.
Схема коррозии
в среде HCl в атмосфере влажного воздуха
А(–):Cr
- 3
Cr3+
2 А(–): Cr
- 3
Cr3+
4
К(+): 2H+
+ 2
H2
3 К(+): O2
+ 2H2O
+ 4
4OH–
3
2Cr + 6H+ 2Cr3+ + 3H2 4Cr + 3O2 + 6H2O 4Cr3+ + 12OH–
2Cr + 6HCl 2CrCl3 + 3H2 4Cr + 3O3 + 6H2O 4Cr(OH)3