
- •Оглавление
- •Естествознание в системе науки и культуры
- •Принципы, формы и методы научного познания
- •Общие принципы научного познания
- •Формы научного познания
- •Методы научного исследования
- •Особая роль математики в естествознании
- •Естествознание и научная картина мира
- •Понятие научной картины мира
- •Историческая смена физических картин мира
- •Панорама современного естествознания
- •Естествознание в аспекте научно-технической революции
- •Тенденции развития естествознания
- •Проблема классификации наук
- •История естествознания
- •Зарождение эмпирического научного знания
- •Античная наука
- •Александрийский период развития науки
- •Развитие науки арабских и среднеазиатских народов в средние века
- •Период схоластики
- •Научная революция XVI–XVII вв.
- •Революция в астрономии
- •Экспериментальный метод Галилея
- •Становление физики как самостоятельной науки
- •Революция в математике
- •Развитие научных методов в естествознании
- •Развитие естествознания в хviii в.
- •Физические концепции естествознания
- •Механистическая картина мира
- •Принцип относительности Галилея
- •Механика Ньютона
- •Характерные особенности механистической картины мира
- •Развитие концепций термодинамики и статистической физики
- •Вещественная и корпускулярная теории теплоты
- •Необратимость времени в термодинамике
- •Первое и второе начала термодинамики
- •Принцип возрастания энтропии, хаос и порядок
- •Статистический подход к описанию макросистем
- •Развитие концепций электромагнитного поля
- •"Экспериментальные исследования по электричеству" Фарадея
- •Теория электромагнетизма Максвелла
- •Корпускулярная и континуальная концепция описания природы
- •Развитие представлений о свете
- •Концепция дальнодействия и близкодействия
- •Развитие концепций пространства и времени в специальной теории относительности
- •Принцип относительности
- •Преобразование Лоренца
- •Релятивистская механика
- •Четырехмерное пространство-время в специальной теории относительности
- •Экспериментальное подтверждение специальной теории относительности
- •Общая теория относительности
- •Принцип эквивалентности
- •Экспериментальное подтверждение общей теории относительности
- •Философские выводы из теории относительности
- •Симметрия пространства и времени и законы сохранения
- •Мегамир в его многообразии и единстве
- •Галактики и структура Вселенной
- •Солнечная система
- •Концепция расширения Вселенной
- •Эволюция Вселенной
- •Концепция большого взрыва
- •Принципы организации микромира
- •Развитие концепции атомизма
- •Теория атома Бора – мост от классики к современности
- •Корпускулярно-волновые свойства микрочастиц
- •Принцип неопределенности
- •Принцип дополнительности
- •Описание микрообъектов в квантовой механике
- •Принцип суперпозиции
- •Принцип тождественности
- •Принципы причинности и соответствия в квантовой механике
- •Фундаментальные взаимодействия в природе
- •Гравитационное взаимодействие
- •Электромагнитное взаимодействие
- •Сильное взаимодействие
- •Слабое взаимодействие
- •Элементарные частицы
- •Характеристики элементарных частиц
- •Классификация элементарных частиц
- •Структурные уровни организации материи
- •Развитие химических концепций
- •Учение о составе вещества
- •Первые представления о химическом элементе
- •Закон постоянства состава
- •Закон простых кратных отношений
- •Гипотеза Авогадро
- •Атомно-молекулярное учение
- •Закон сохранения массы и энергии
- •Периодический закон Менделеева
- •Электронное строение атома
- •Структура химических систем
- •Теория химического строения Бутлерова
- •Химическая связь
- •Физико-химические закономерности протекания химических процессов
- •Энергетика химических процессов
- •Химическая кинетика
- •Понятие о катализе и катализаторах
- •Реакционная способность веществ
- •Обратимые реакции и состояние химического равновесия
- •Развитие химии экстремальных состояний
- •Особенности биологического уровня организации материи
- •Свойства живых систем
- •Уровни организации живой природы
- •Молекулярный уровень
- •Клеточный уровень
- •Органно-тканевый уровень
- •Организменный уровень
- •Популяционно-видовой уровень
- •Биогеоценотический и биосферный уровни
- •Клетка – структурная и функциональная единица живых организмов
- •Клеточная теория
- •Химический состав клеток
- •Клеточные и неклеточные формы жизни
- •Систематика живой природы
- •Генетика
- •Законы Менделя
- •Хромосомная теория наследственности
- •Изменчивость
- •Генетика человека
- •Генная инженерия и биоэтика
- •Принципы эволюции живых систем
- •Общее понятие прогресса и его проявление в живой природе
- •Ламаркизм
- •Дарвинизм. Эволюция путем естественного отбора
- •Развитие дарвинизма. Основные факторы и движущие силы эволюции
- •Доказательства эволюции живой природы
- •Биохимическая эволюция
- •Основные подходы к проблеме происхождения жизни
- •Химическая эволюция
- •Коацерватная стадия в процессе возникновения жизни
- •Начальные этапы развития жизни на Земле
- •Происхождение и эволюция человека
- •Положение человека в системе животного мира
- •Отряд приматов
- •Происхождение человека
- •Этапы эволюции человека
- •Биосфера и человек
- •Концептуальные подходы к изучению биосферы
- •Многообразие живых организмов – основа организации и устойчивости биосферы
- •Биогеохимические циклы в биосфере
- •Эволюция биосферы
- •Ноосфера. Путь к единой культуре.
- •Охрана биосферы
- •Влияние космоса на земные процессы
- •Современная наука о человеке
- •Здоровье и работоспособность человека
- •Физиология человека
- •Мозг и сознание
- •Сознание – функция мозга
- •Смерть мозга и морально-этические и правовые проблемы
- •Структура субъективного мира человека
- •Эмоции, чувства и интеллект
- •Сознание и самосознание
- •Сознательное и бессознательное
- •Творчество
- •Системный подход в естествознании
- •Принципы эволюции систем
- •Самоорганизация в живой и неживой природе
- •Заключение
- •Литература
Клетка – структурная и функциональная единица живых организмов
Клетка– элементарная биологическая система, способная к самообновлению, самовоспроизведению и развитию, т.е. наделенная всеми признаками живого организма. Клетка является наименьшей самостоятельной единицей строения, функционирования и развития живого организма.
Клеточные структуры лежат в основе строения любого живого организма, каким бы многообразным и сложным не представлялось его строение. Большинство растений и животных состоят из многих клеток; они получили название многоклеточных. У многоклеточных организмов клетки образуют ткани, входящие в состав органов. Жизнедеятельность клеток у многоклеточных организмов подчинена координирующему влиянию целостного организма.
Предпосылкой открытия клетки было изобретение микроскопа и его использование для исследования биологических объектов. В 1665 г. английский физик Р. Гук (1635–1703), рассматривая под микроскопом срез клетки, обнаружил, что она состоит из ячеек, напоминающих по строению пчелиные соты. Эти образования Гук назвал клетками (от лат.cellula– ячейка, клетка). Такое же строение Гук отметил в сердцевине бузины, камыша и некоторых других растений. Во второй половине XVII в. появились работы ряда микроскопистов, также обнаруживших ячеистое строение многих растительных объектов. Голландский естествоиспытатель А. Левенгук (1632–1723) впервые обнаружил в воде одноклеточные организмы.
Внимание микроскопистов привлекала, в первую очередь, клеточная оболочка. Лишь во втором десятилетии ХIХ в. исследователи обратили внимание на полужидкое студенистое содержимое, заполняющее клетку. Чешский ученый Я. Пуркине (1787–1869) назвал это вещество протоплазмой (от гр. protos– первый,plasma– образование). Однако еще продолжало существовать убеждение, что оболочка, а не протоплазма является основной, главнейшей частью клетки. В 1831 г. английский ботаник Б. Броун (1773–1858) обнаружил в клетке ядро. Его открытие было важной предпосылкой для установления сходства между клетками растений и животных.
Клеточная теория
Клеточная теория, объединившая идеи многих ученых и постулировавшая, что клетка является основной структурной и функциональной единицей живых организмов, была впервые сформулирована 1838 г. немецким ученым Т. Шванном (1818–1882). Шванн нашел верный принцип сопоставления клеток растительных и животных организмов. Он установил, что хотя клетки животных крайне разнообразны и значительно отличаются от клеток растений, ядра во всех клетках обладают большим сходством. Если в каком-либо видимом под микроскопом образовании присутствует ядро, это образование, по мнению Шванна, можно считать клеткой. Основываясь на таком критерии, Шванн выдвинул основные положения клеточной теории:
клетка является главной структурной единицей всех организмов (растительных и животных);
процесс образования клеток обусловливает рост и развитие тканей и организмов.
В 1858 г. немецкий ученый Р. Вирхов (1821–1902) дополнил клеточную теорию важным положением о том, что клетка может происходить только от клетки в результате ее деления.
Со времени создания клеточной теории учение о клетке как элементарной микроскопической структуре организмов непрерывно развивалось. Для Шванна и его современников клетка оставалась преимущественно пространством, ограниченным оболочкой. Постепенно эти представления заменило понимание того, что основным субстратом является протоплазма. К концу прошлого века благодаря успехам микроскопической техники было обнаружено сложное строение клетки, описаны органоиды – части клетки, выполняющие различные функции. Применение электронной микроскопии позволило изучить тонкое строение всех структур клетки, что дополнило клеточную теорию новыми данными.
Современная клеточная теория включает следующие положения:
клетка – основная структурно- функциональная и генетическая единица живых организмов, наименьшая единица живого;
клетки всех одноклеточных и многоклеточных организмов сходны по строению, химическому составу и важнейшим проявлениям процессов жизнедеятельности;
каждая новая клетка образуется в результате деления исходной (материнской) клетки;
клетки многоклеточных организмов специализированы: они выполняют разные функции и образуют ткани.
Клетку считают открытой элементарной живой системой. Клетка отграничена от окружающей среды клеточной мембраной, а внутри нее выделяется более плотное ядро, находящееся в полужидкой цитоплазме. Клетка обладает всеми признаками живого: самовоспроизведением, саморегуляцией, историческим развитием, информационным отражением. В клетках происходят процессы обмена веществ и превращения энергии.
Достижения цитологии (науки о клетках) связаны с применением физических и химических методов: электронного микроскопа, рентгеноструктурного анализа и других. Увеличение в сотни тысяч раз позволяет увидеть мельчайшие детали внутреннего строения клеток, а современные методы химического анализа – установить химический состав клеток.