
- •Оглавление
- •Естествознание в системе науки и культуры
- •Принципы, формы и методы научного познания
- •Общие принципы научного познания
- •Формы научного познания
- •Методы научного исследования
- •Особая роль математики в естествознании
- •Естествознание и научная картина мира
- •Понятие научной картины мира
- •Историческая смена физических картин мира
- •Панорама современного естествознания
- •Естествознание в аспекте научно-технической революции
- •Тенденции развития естествознания
- •Проблема классификации наук
- •История естествознания
- •Зарождение эмпирического научного знания
- •Античная наука
- •Александрийский период развития науки
- •Развитие науки арабских и среднеазиатских народов в средние века
- •Период схоластики
- •Научная революция XVI–XVII вв.
- •Революция в астрономии
- •Экспериментальный метод Галилея
- •Становление физики как самостоятельной науки
- •Революция в математике
- •Развитие научных методов в естествознании
- •Развитие естествознания в хviii в.
- •Физические концепции естествознания
- •Механистическая картина мира
- •Принцип относительности Галилея
- •Механика Ньютона
- •Характерные особенности механистической картины мира
- •Развитие концепций термодинамики и статистической физики
- •Вещественная и корпускулярная теории теплоты
- •Необратимость времени в термодинамике
- •Первое и второе начала термодинамики
- •Принцип возрастания энтропии, хаос и порядок
- •Статистический подход к описанию макросистем
- •Развитие концепций электромагнитного поля
- •"Экспериментальные исследования по электричеству" Фарадея
- •Теория электромагнетизма Максвелла
- •Корпускулярная и континуальная концепция описания природы
- •Развитие представлений о свете
- •Концепция дальнодействия и близкодействия
- •Развитие концепций пространства и времени в специальной теории относительности
- •Принцип относительности
- •Преобразование Лоренца
- •Релятивистская механика
- •Четырехмерное пространство-время в специальной теории относительности
- •Экспериментальное подтверждение специальной теории относительности
- •Общая теория относительности
- •Принцип эквивалентности
- •Экспериментальное подтверждение общей теории относительности
- •Философские выводы из теории относительности
- •Симметрия пространства и времени и законы сохранения
- •Мегамир в его многообразии и единстве
- •Галактики и структура Вселенной
- •Солнечная система
- •Концепция расширения Вселенной
- •Эволюция Вселенной
- •Концепция большого взрыва
- •Принципы организации микромира
- •Развитие концепции атомизма
- •Теория атома Бора – мост от классики к современности
- •Корпускулярно-волновые свойства микрочастиц
- •Принцип неопределенности
- •Принцип дополнительности
- •Описание микрообъектов в квантовой механике
- •Принцип суперпозиции
- •Принцип тождественности
- •Принципы причинности и соответствия в квантовой механике
- •Фундаментальные взаимодействия в природе
- •Гравитационное взаимодействие
- •Электромагнитное взаимодействие
- •Сильное взаимодействие
- •Слабое взаимодействие
- •Элементарные частицы
- •Характеристики элементарных частиц
- •Классификация элементарных частиц
- •Структурные уровни организации материи
- •Развитие химических концепций
- •Учение о составе вещества
- •Первые представления о химическом элементе
- •Закон постоянства состава
- •Закон простых кратных отношений
- •Гипотеза Авогадро
- •Атомно-молекулярное учение
- •Закон сохранения массы и энергии
- •Периодический закон Менделеева
- •Электронное строение атома
- •Структура химических систем
- •Теория химического строения Бутлерова
- •Химическая связь
- •Физико-химические закономерности протекания химических процессов
- •Энергетика химических процессов
- •Химическая кинетика
- •Понятие о катализе и катализаторах
- •Реакционная способность веществ
- •Обратимые реакции и состояние химического равновесия
- •Развитие химии экстремальных состояний
- •Особенности биологического уровня организации материи
- •Свойства живых систем
- •Уровни организации живой природы
- •Молекулярный уровень
- •Клеточный уровень
- •Органно-тканевый уровень
- •Организменный уровень
- •Популяционно-видовой уровень
- •Биогеоценотический и биосферный уровни
- •Клетка – структурная и функциональная единица живых организмов
- •Клеточная теория
- •Химический состав клеток
- •Клеточные и неклеточные формы жизни
- •Систематика живой природы
- •Генетика
- •Законы Менделя
- •Хромосомная теория наследственности
- •Изменчивость
- •Генетика человека
- •Генная инженерия и биоэтика
- •Принципы эволюции живых систем
- •Общее понятие прогресса и его проявление в живой природе
- •Ламаркизм
- •Дарвинизм. Эволюция путем естественного отбора
- •Развитие дарвинизма. Основные факторы и движущие силы эволюции
- •Доказательства эволюции живой природы
- •Биохимическая эволюция
- •Основные подходы к проблеме происхождения жизни
- •Химическая эволюция
- •Коацерватная стадия в процессе возникновения жизни
- •Начальные этапы развития жизни на Земле
- •Происхождение и эволюция человека
- •Положение человека в системе животного мира
- •Отряд приматов
- •Происхождение человека
- •Этапы эволюции человека
- •Биосфера и человек
- •Концептуальные подходы к изучению биосферы
- •Многообразие живых организмов – основа организации и устойчивости биосферы
- •Биогеохимические циклы в биосфере
- •Эволюция биосферы
- •Ноосфера. Путь к единой культуре.
- •Охрана биосферы
- •Влияние космоса на земные процессы
- •Современная наука о человеке
- •Здоровье и работоспособность человека
- •Физиология человека
- •Мозг и сознание
- •Сознание – функция мозга
- •Смерть мозга и морально-этические и правовые проблемы
- •Структура субъективного мира человека
- •Эмоции, чувства и интеллект
- •Сознание и самосознание
- •Сознательное и бессознательное
- •Творчество
- •Системный подход в естествознании
- •Принципы эволюции систем
- •Самоорганизация в живой и неживой природе
- •Заключение
- •Литература
Клеточный уровень
Клеточный уровень –это уровень, связанный со структурной и функциональной единицей всех живых организмов –клеткой. На клеточном уровне также отмечается однотипность всех живых организмов. У всех организмов только на клеточном уровне возможен биосинтез и реализация наследственной информации. Клеточный уровень у одноклеточных организмов совпадает с организменным. В истории жизни на нашей планете был такой период (первая половина архейской эры – 3,5 млрд. лет назад), когда все организмы находились на этом уровне организации.
Органно-тканевый уровень
Тканевый уровеньвозник вместе с появлением многоклеточных животных и растений, имеющих дифференцированные ткани. Ткань представляет собой совокупность сходных по строению клеток, объединенных выполнением общей функции. Большое сходство между всеми живыми организмами сохраняется на тканевом уровне. Всего лишь 5 основных тканей входят в состав органов всех многоклеточных животных и 6 основных тканей образуют органы растений.
Совместно функционирующие клетки, относящиеся к разным тканям, составляют органы. Например, кожа человека как орган включает эпителий и соединительную ткань, которые вместе выполняют целый ряд функций; среди них наиболее значительная – защитная.
Организменный уровень
Организменный уровеньсвязан с функционированием живого организма как единого целого. Единицей организменного уровня является особь, которая рассматривается как живая система от момента ее зарождения до смерти. На организменном уровне обнаруживается труднообозримое многообразие живых организмов. В настоящее время на Земле обитает более миллиона видов животных и около полумиллиона видов высших растений. Каждый вид состоит из отдельных индивидуумов, особей.
Популяционно-видовой уровень
Популяционно-видовой уровеньсвязан с совокупностью живых организмов одноговида, объединенных общим местом обитания и составляющихпопуляцию. Видом называют совокупность особей, сходных по строению и физиологическим свойствам, имеющих общее происхождение, могущих свободно скрещиваться и давать плодовитое потомство.
Популяционный уровень начинается с изучения взаимосвязи и взаимодействия между особями одного вида, которые имеют один генофонд, и занимают единую территорию. Популяционный уровень выходит за рамки отдельного организма, и поэтому его относят к надорганизменным уровням организации. По современным воззрениям именно популяции служат элементарными единицами эволюции. Популяции представляют собой незамкнутые открытые системы, которые могут существовать и развиваться только при взаимодействии с другими популяциями.
Определить границу между популяциями чрезвычайно трудно, т.к. в силу подвижности организмов, составляющих популяцию, происходит непрерывное перемешивание ее населения.
Биогеоценотический и биосферный уровни
Биогеоценозы– исторически сложившиеся устойчивые сообщества популяций разных видов, связанных между собой и с окружающей неживой природой обменом веществ, энергии и информации. Это совокупности всех живых организмов, населяющих однородный участок земной поверхности и факторы окружающей среды (приземный слой атмосферы, почва, солнечная энергия), представляющие собой единый природный комплекс. Биогеоценозы составляютбиосферуи обусловливают все процессы, протекающие в ней.
Биосфера является системой высшего порядка, охватывающая все явления жизни на нашей планете. Биологический обмен веществ – это тот фактор, который объединяет все нижележащие уровни организации в биосферу. На этом уровне происходит круговорот веществ и превращение энергии, связанные с жизнедеятельностью всех живых организмов, обитающих на Земле.
Только при комплексном изучении явлений жизни на всех уровнях можно получать целостное представление об особой (биологической) форме существования материи.