- •Предисловие
- •Глава 1. Предмет и задачи метрологии
- •1.1. Предмет метрологии
- •1.2. Структура теоретической метрологии
- •1.3. Краткий очерк истории развития метрологии
- •Глава 2. Основные представления теоретической метрологии
- •2.1. Физические свойства и величины
- •2.1.1. Классификация величин
- •2.1.2. Свойства, проявляющие себя только в отношении эквивалентности. Понятие счета
- •2.1.3. Интенсивные величины, удовлетворяющие отношениям эквивалентности и порядка. Понятия величины и контроля
- •2.1.4. Экстенсивные величины, удовлетворяющие
- •Отношениям, эквивалентности, порядка и
- •Аддитивности. Понятия о единице величины и
- •Измерении
- •2.1.5. Шкалы измерений
- •2.2. Измерение и его основные операции
- •2.3. Элементы процесса измерений
- •2.4. Основные этапы измерений
- •2.5. Постулаты теории измерений
- •2.6. Классификация измерений
- •2.7. Понятие об испытании и контроле
- •Глава 3. Теория воспроизведения
- •3.2. Принципы построения систем единиц физических величин
- •3.3. Международная система единиц (система си)
- •3.4. Воспроизведение единиц физических величин и передача их размеров
- •3.4.1. Понятие о единстве измерений
- •3.4.2. Эталоны, единиц физических величин
- •3.4.3. Поверочные схемы
- •3.4.4. Способы поверки средств измерений
- •3.4.5. Стандартные образцы
- •3.5. Эталоны единиц системы си
- •Глава 4. Основные понятия теории погрешностей
- •4.1. Классификация погрешностей
- •4.2. Принципы оценивания погрешностей
- •4.3. Математические модели и характеристики погрешностей
- •4.4. Погрешность и неопределенность
- •4.5. Правила округления результатов измерений
- •Глава 5. Систематические погрешности
- •5.1. Систематические погрешности и их классификация
- •5.2. Способы обнаружения и убтранения систематических погрешностей
- •Глава 6. Случайные погрешности
- •6.1. Вероятностное описание случайных погрешностей
- •6.2. Числовые параметры законов распределения
- •6.2.1. Общие сведения
- •6.2.2. Понятие центра распределения
- •6.2.3. Моменты распределений
- •6.2.4. Энтропийное значение погрешности
- •6.3. Основные законы распределения
- •6.3.1. Общие сведения
- •6.3.2. Трапецеидальные распределения
- •6.3.3. Экспоненциальные распределения
- •6.3.4. Нормальное распределение (распределение Гаусса)
- •6.3.5. Уплощенные распределения
- •6.3.6. Семейство распределений Стъюдента
- •6.3.7. Двухмодальные распределения
- •6.4. Точечные оценки законов распределения
- •6.5. Доверительная вероятность и доверительный интервал
- •Глава 7. Грубые погрешности и методы их исключения
- •7.1. Понятие о грубых погрешностях
- •7.2. Критерии исключения грубых погрешностей
- •Глава 8. Обработка результатов измерений
- •8.1. Прямые многократные измерения
- •8.1,1. Равноточные измерения
- •8.1.2. Идентификация формы распределения результатов измерений
- •8.2. Однократные измерения
- •8.3. Косвенные измерения
- •8.4. Совместные и совокупные измерения
- •Глава 9. Суммирование погрешностей
- •9.1. Основы теории суммирования погрешностей
- •9.2. Суммирование систематических погрешностей
- •9.3. Суммирование случайных погрешностей
- •9.4. Суммирование систематических и случайных погрешностей
- •9.5. Критерий ничтожно малой погрешности
- •Глава 10. Измерительные сигналы
- •10.1. Классификация сигналов
- •10.1.1. Классификация измерительных сигналов
- •10.1.2. Классификация помех
- •10.2. Математическое описание измерительных сигналов
- •10.3. Математические модели элементарных измерительных сигналов
- •10.4. Математические модели сложных измерительных сигналов
- •10.5. Квантование и дискретизация измерительных сигналов
- •10.6. Интегральные параметры периодического сигнала
- •Глава 11. Средства измерений
- •11.1. Понятие о средстве измерений
- •11.2. Статические характеристики и параметры средств измерений
- •11.3. Динамические характеристики и параметры средств измерений
- •11.4. Классификация средств измерений
- •11.5. Элементарные средства измерений
- •11.6. Комплексные средства измерений
- •11.6.1. Измерительные приборы и установки
- •11.6.2. Измерительные системы и измерительно-вычислительные комплексы
- •11.7. Моделирование средств измерений
- •11.7.1. Структурные элементы и схемы средств измерений
- •11.7.2. Структурная схема прямого преобразования
- •11.7.3. Уравновешивающее преобразование
- •11.7.4. Расчет измерительных каналов средств измерений
- •Глава 12. Метрологические
- •12.2. Метрологические характеристики, предназначенные для определения результатов измерений
- •12.3. Метрологические характеристики погрешностей средств измерений
- •12.4. Характеристики чувствительности средств
- •Измерений к влияющим величинам.
- •Неинформативные параметры выходного
- •Сигнала
- •12.5. Нормирование динамических характеристик средств измерений
- •12.6. Метрологические характеристики влияния на инструментальную составляющую погрешности измерения
- •12.7. Комплексы нормируемых метрологических характеристик средств измерений
- •12.8. Расчет погрешностей средств измерений по нормированным метрологическим характеристикам
- •12.9. Классы точности средств измерений
- •Глава 13. Метрологическая надежность средств измерений
- •13.1. Основные понятия теории метрологической надежности
- •13.2. Изменение метрологических характеристик средств измерений в процессе эксплуатации
- •13.3. Математические модели изменения во времени погрешности средств измерений
- •13.3.1. Линейная модель изменения погрешности
- •13.3.2. Экспоненциальная модель изменения погрешности
- •13.3.3. Логистическая модель изменения погрешности
- •13.4. Показатели метрологической надежности средств измерений
- •13.5. Метрологическая надежность и межповерочные интервалы
- •Заключение
- •Приложение 1. Статистические таблицы
- •Приложение 2. Список основных государственных стандартов и нормативных документов в области метрологии
- •Приложение 3. Рабочая программа по курсу "Теоретическая метрология" специальности 190800 "Метрология и метрологическое обеспечение"
- •Тема 1. Предмет и задачи метрологии
- •Тема 2. Основные представления теоретической метрологии
- •Тема 3. Теория воспроизведения единиц физических величин и передачи их размеров (теория единства измерений)
- •Тема 4. Погрешности измерений
- •Тема 5. Систематические погрешности
- •Тема 6. Случайные погрешности
- •Тема 7. Грубые погрешности и методы их исключения
- •Тема 8. Обработка результатов измерений
- •Тема 9. Суммирование погрешностей
- •Тема 10. Измерительные сигналы
- •Тема 11. Средства измерений
- •Тема 12. Метрологическая служба Российской Федерации
- •Литература
- •Глава 1. Предмет и задачи метрологии 6
- •Глава 2. Основные представления 15
- •Глава 3. Теория воспроизведения 55
- •Глава 4. Основные понятия теории 87
- •Глава 5. Систематические погрешности 105
- •Глава 6. Случайные погрешности 118
- •Глава 7. Грубые погрешности 143
- •Глава 12. Метрологические 266
- •Глава 13. Метрологическая надежность средств измерений 292
- •105318, Москва, Измайловское ш., 4
- •432980, Г. Ульяновск, ул. Гончарова, 14
12.7. Комплексы нормируемых метрологических характеристик средств измерений
Большое разнообразие групп СИ делает невозможной регламентацию конкретных комплексов MX для каждой из этих групп в одном нормативном документе. В то же время все СИ не могут характеризоваться единым комплексом нормируемых MX, даже если он представлен в самой общей форме.
Изучение вопроса о рациональной классификации СИ по комплексам нормируемых MX показало [58], что можно выделить ряд общих групп, для которых могут быть назначены общие MX. Основным признаком деления СИ на группы является общность комплекса нормируемых MX, необходимых для определения характерных инструментальных составляющих погрешностей измерений. В этом случае все СИ целесообразно разделить на три большие группы, представленные по степени усложнения MX: 1) меры и цифро-аналоговые преобразователи; 2) измерительные и регистрирующие приборы; 3) аналоговые и аналого-цифровые измерительные преобразователи.
При установлении комплекса нормируемых MX принята следующая модель инструментальной составляющей погрешности измерений: lnst = MI*int, где символом « * » обозначено объединение погрешности M1 СИ в реальных условиях его применения и составляющей погрешности int, обусловленной взаимодействием СИ с объектом измерений. Под объединением понимается применение к составляющим некоторого функционала, позволяющего рассчитать погрешность, обусловленную их совместным воздействием. В каждом случае функционал определяется исходя из свойств конкретного СИ.
Всю совокупность MX можно разбить на две большие группы. В первой из них инструментальная составляющая погрешности определяется путем статистического объединения отдельных ее составляющих. При этом доверительный интервал, в котором находится инструментальная погрешность, определяется с заданной доверительной вероятностью меньше единицы. Для MX этой группы принята следующая модель погрешности в реальных условиях применения (модель 1):

где s — систематическая составляющая; 0 — случайная составляющая; ̊H — случайная составляющая, обусловленная гистерезисом; с1— объединение дополнительных погрешностей; dyn — динамическая погрешность; L — число дополнительных погрешностей, равное всех величин, существенно влияющих на погрешность в реальных условиях. В зависимости от свойств СИ данного типа и рабочих условий его применения отдельные составляющие могут отсутствовать.
Первая модель выбирается, если допускается, что погрешность изредка превышает значение, рассчитанное по нормируемым характеристикам. При этом по комплексу MX можно рассчитать точечные и интервальные характеристики, в которых инструментальная составляющая погрешности измерений находится с любой заданной доверительной вероятностью, близкой к единице, но меньше ее.
Для второй группы MX статистическое объединение составляющих не применяется. К таким СИ относятся лабораторные средства, а также большинство образцовых средств, при использовании которых не производятся многократные наблюдения с усреднением результатов. Инструментальная погрешность в данном случае определяется как арифметическая сумма наибольших возможных значений ее составляющих. Эта оценка дает доверительный интервал с вероятностью, равной единице, являющийся предельной оценкой сверху искомого интервала погрешности, охватывающего все возможные, в том числе весьма редко реализующиеся, значения. Это приводит к существенному ужесточению требований к MX, что может быть применимо только к наиболее ответственным измерениям, например связанным со здоровьем и жизнью людей, с возможностью катастрофических последствий неверных измерений и т.п.
Арифметическое суммирование наибольших возможных значений составляющих инструментальной погрешности приводит к включению в комплекс нормируемых MX пределов допускаемой погрешности, а не статистических моментов. Это допустимо также для СИ, имеющих не более трех составляющих, каждая из которых определяется по отдельной нормируемой MX. В этом случае расчетные оценки инструментальной погрешности, полученные арифметическим объединением наибольших значений ее составляющих и статистическим суммированием характеристик составляющих (при вероятности, хотя и меньшей, но достаточно близкой к единице), практически различаться не будут. Для рассматриваемого случая модель 2 погрешности СИ:

Здесь D0 = Ds + D̊H — основная погрешность СИ без разбиения ее на составляющие (в отличие от модели 1). Модель 2 применима только для тех СИ, у которых случайная составляющая пренебрежимо мала.
Вопросы выбора MX достаточно детально регламентированы в ГОСТ 8.009—84, где приведены характеристики, которые должны нормироваться для названных выше групп СИ. Приведенный перечень может корректироваться для конкретного средства измерений с учетом его особенностей и условий эксплуатации. Важно отметить, что не следует нормировать те MX, которые оказывают несущественный по сравнению с другими вклад в инструментальную погрешность. Определение того, важна ли данная погрешность или нет, производится на основе критериев существенности, приведенных в ГОСТ 8.009-84 и подробно проанализированных в [58].
