
- •Предисловие
- •Глава 1. Предмет и задачи метрологии
- •1.1. Предмет метрологии
- •1.2. Структура теоретической метрологии
- •1.3. Краткий очерк истории развития метрологии
- •Глава 2. Основные представления теоретической метрологии
- •2.1. Физические свойства и величины
- •2.1.1. Классификация величин
- •2.1.2. Свойства, проявляющие себя только в отношении эквивалентности. Понятие счета
- •2.1.3. Интенсивные величины, удовлетворяющие отношениям эквивалентности и порядка. Понятия величины и контроля
- •2.1.4. Экстенсивные величины, удовлетворяющие
- •Отношениям, эквивалентности, порядка и
- •Аддитивности. Понятия о единице величины и
- •Измерении
- •2.1.5. Шкалы измерений
- •2.2. Измерение и его основные операции
- •2.3. Элементы процесса измерений
- •2.4. Основные этапы измерений
- •2.5. Постулаты теории измерений
- •2.6. Классификация измерений
- •2.7. Понятие об испытании и контроле
- •Глава 3. Теория воспроизведения
- •3.2. Принципы построения систем единиц физических величин
- •3.3. Международная система единиц (система си)
- •3.4. Воспроизведение единиц физических величин и передача их размеров
- •3.4.1. Понятие о единстве измерений
- •3.4.2. Эталоны, единиц физических величин
- •3.4.3. Поверочные схемы
- •3.4.4. Способы поверки средств измерений
- •3.4.5. Стандартные образцы
- •3.5. Эталоны единиц системы си
- •Глава 4. Основные понятия теории погрешностей
- •4.1. Классификация погрешностей
- •4.2. Принципы оценивания погрешностей
- •4.3. Математические модели и характеристики погрешностей
- •4.4. Погрешность и неопределенность
- •4.5. Правила округления результатов измерений
- •Глава 5. Систематические погрешности
- •5.1. Систематические погрешности и их классификация
- •5.2. Способы обнаружения и убтранения систематических погрешностей
- •Глава 6. Случайные погрешности
- •6.1. Вероятностное описание случайных погрешностей
- •6.2. Числовые параметры законов распределения
- •6.2.1. Общие сведения
- •6.2.2. Понятие центра распределения
- •6.2.3. Моменты распределений
- •6.2.4. Энтропийное значение погрешности
- •6.3. Основные законы распределения
- •6.3.1. Общие сведения
- •6.3.2. Трапецеидальные распределения
- •6.3.3. Экспоненциальные распределения
- •6.3.4. Нормальное распределение (распределение Гаусса)
- •6.3.5. Уплощенные распределения
- •6.3.6. Семейство распределений Стъюдента
- •6.3.7. Двухмодальные распределения
- •6.4. Точечные оценки законов распределения
- •6.5. Доверительная вероятность и доверительный интервал
- •Глава 7. Грубые погрешности и методы их исключения
- •7.1. Понятие о грубых погрешностях
- •7.2. Критерии исключения грубых погрешностей
- •Глава 8. Обработка результатов измерений
- •8.1. Прямые многократные измерения
- •8.1,1. Равноточные измерения
- •8.1.2. Идентификация формы распределения результатов измерений
- •8.2. Однократные измерения
- •8.3. Косвенные измерения
- •8.4. Совместные и совокупные измерения
- •Глава 9. Суммирование погрешностей
- •9.1. Основы теории суммирования погрешностей
- •9.2. Суммирование систематических погрешностей
- •9.3. Суммирование случайных погрешностей
- •9.4. Суммирование систематических и случайных погрешностей
- •9.5. Критерий ничтожно малой погрешности
- •Глава 10. Измерительные сигналы
- •10.1. Классификация сигналов
- •10.1.1. Классификация измерительных сигналов
- •10.1.2. Классификация помех
- •10.2. Математическое описание измерительных сигналов
- •10.3. Математические модели элементарных измерительных сигналов
- •10.4. Математические модели сложных измерительных сигналов
- •10.5. Квантование и дискретизация измерительных сигналов
- •10.6. Интегральные параметры периодического сигнала
- •Глава 11. Средства измерений
- •11.1. Понятие о средстве измерений
- •11.2. Статические характеристики и параметры средств измерений
- •11.3. Динамические характеристики и параметры средств измерений
- •11.4. Классификация средств измерений
- •11.5. Элементарные средства измерений
- •11.6. Комплексные средства измерений
- •11.6.1. Измерительные приборы и установки
- •11.6.2. Измерительные системы и измерительно-вычислительные комплексы
- •11.7. Моделирование средств измерений
- •11.7.1. Структурные элементы и схемы средств измерений
- •11.7.2. Структурная схема прямого преобразования
- •11.7.3. Уравновешивающее преобразование
- •11.7.4. Расчет измерительных каналов средств измерений
- •Глава 12. Метрологические
- •12.2. Метрологические характеристики, предназначенные для определения результатов измерений
- •12.3. Метрологические характеристики погрешностей средств измерений
- •12.4. Характеристики чувствительности средств
- •Измерений к влияющим величинам.
- •Неинформативные параметры выходного
- •Сигнала
- •12.5. Нормирование динамических характеристик средств измерений
- •12.6. Метрологические характеристики влияния на инструментальную составляющую погрешности измерения
- •12.7. Комплексы нормируемых метрологических характеристик средств измерений
- •12.8. Расчет погрешностей средств измерений по нормированным метрологическим характеристикам
- •12.9. Классы точности средств измерений
- •Глава 13. Метрологическая надежность средств измерений
- •13.1. Основные понятия теории метрологической надежности
- •13.2. Изменение метрологических характеристик средств измерений в процессе эксплуатации
- •13.3. Математические модели изменения во времени погрешности средств измерений
- •13.3.1. Линейная модель изменения погрешности
- •13.3.2. Экспоненциальная модель изменения погрешности
- •13.3.3. Логистическая модель изменения погрешности
- •13.4. Показатели метрологической надежности средств измерений
- •13.5. Метрологическая надежность и межповерочные интервалы
- •Заключение
- •Приложение 1. Статистические таблицы
- •Приложение 2. Список основных государственных стандартов и нормативных документов в области метрологии
- •Приложение 3. Рабочая программа по курсу "Теоретическая метрология" специальности 190800 "Метрология и метрологическое обеспечение"
- •Тема 1. Предмет и задачи метрологии
- •Тема 2. Основные представления теоретической метрологии
- •Тема 3. Теория воспроизведения единиц физических величин и передачи их размеров (теория единства измерений)
- •Тема 4. Погрешности измерений
- •Тема 5. Систематические погрешности
- •Тема 6. Случайные погрешности
- •Тема 7. Грубые погрешности и методы их исключения
- •Тема 8. Обработка результатов измерений
- •Тема 9. Суммирование погрешностей
- •Тема 10. Измерительные сигналы
- •Тема 11. Средства измерений
- •Тема 12. Метрологическая служба Российской Федерации
- •Литература
- •Глава 1. Предмет и задачи метрологии 6
- •Глава 2. Основные представления 15
- •Глава 3. Теория воспроизведения 55
- •Глава 4. Основные понятия теории 87
- •Глава 5. Систематические погрешности 105
- •Глава 6. Случайные погрешности 118
- •Глава 7. Грубые погрешности 143
- •Глава 12. Метрологические 266
- •Глава 13. Метрологическая надежность средств измерений 292
- •105318, Москва, Измайловское ш., 4
- •432980, Г. Ульяновск, ул. Гончарова, 14
10.6. Интегральные параметры периодического сигнала
Переменный периодический сигнал Y(t) кроме совокупности мгновенных значений часто описывается несколькими общепринятыми обобщающими параметрами, называемыми интегральными и характеризующими в целом период сигнала. Каждому закону изменения сигнала соответствуют определенные интегральные значения: амплитудное, среднее, средневыпрямленное и среднеквадратическое.
Амплитудное (пиковое) значение Ym равно максимальному на периоде значению сигнала Y(t). По сути своей амплитудное значение является мгновенным, а не интегральным. Однако оно используется при расчете коэффициентов формы, амплитуды и усреднения и поэтому рассматривается в этом разделе.
Среднее
значение
описывает
постоянную составляющую сигнала. Так,
для синусоидального сигнала среднее
значение равно нулю, следовательно, он
не содержит постоянной составляющей.
Средневыпрямленное
значение
используется для симметричных
относительно оси времени сигналов,
т.е. не содержащих постоянной составляющей.
Среднеквадратическое
значение
где Yk — среднеквадратическое значение k-й гармоники сигнала Y(t). Его иногда называют действующим или эффективным, хотя эти термины ГОСТ 16465-70 считает устаревшими. Среднеквадратическое значение сигнала является единственной истинной мерой его мощности. Эти значения широко используются в практике электрических измерений. Подавляющее большинство вольтметров програ-дуировано в среднеквадратических значениях напряжения.
Связь между перечисленными параметрами устанавливается с помощью следующих коэффициентов: формы kф = Yскз/Yсвз, амплитуды ka = Ym/Yскз и усреднения ky = Ym/Yсвз = kakф. Числовые значения рассмотренных коэффициентов для некоторых сигналов приведены в табл. 10.2.
Таблица 10.2
Значения коэффициентов амплитуды, формы в усреднения для ряда наиболее распространенных сигналов
Сигнал |
k.а |
k.ф |
k.у |
Синусоидальный |
2 1,41 |
,(22) 1,11 |
/2 1,57 |
Меандр |
1 |
1 |
1 |
Линейный знакопеременный |
3 1,73 |
2/3 1,16 |
2 |
Однополярный линейно изменяющийся (пилообразный ) |
3 1,73 |
2/3 1,16 |
2 |
Пример 10.2. В измерительной технике часто используются периодические и не содержащие постоянной составляющей сигналы. Они имеют самую разнообразную форму: прямоугольную, линейную знакопеременную, синусоидальную и т.д. до близкой к форме дельта-функции Дирака. Для моделирования и настройки средств измерений удобно иметь одну простую математическую функцию, которая при изменении одного—двух ее параметров описывала бы с той или иной степенью точности все перечисленные выше формы сигналов. Для данной цели подходит известная функция Иордана
(10.9)
где Ym— амплитуда сигнала; = 2f — круговая частота; — параметр формы, изменяющийся от -0,(999) до бесконечности. При - 1, получаем практически прямоугольный сигнал, а при данная функция по форме становится близкой к дельта-функции Дирака (рис. 10.17).
Рис. 10.17. Вид функции Иордана при различных значениях
коэффициента
Среднеквадратическое и средневыпрямленное значения сигнала, описываемого функцией Иордана, зависят от параметра формы и могут быть определены по формулам:
Приведенные выражения позволяют найти все три коэффициента, характеризующие сигнал (10.9). Эти коэффициенты, а также коэффициент гармоник kг, рассчитываемый по формуле (10.4), в значительной степени зависят от параметра формы . Рассчитанные зависимости приведены в табл. 10.3.
Таблица 10.3
Значения коэффициентов kф(), ka() и kr() функции Иордана при различных значениях
|
-0,999 |
-0,9 |
0 |
2 |
20 |
60 |
100 |
500 |
1000 |
5000 |
k.ф |
1,00 |
1,04 |
1,11 |
1,15 |
1,35 |
1,50 |
1,58 |
1,91 |
2,10 |
2,65 |
k.а |
1,02 |
1,15 |
1,41 |
1,65 |
2,36 |
2,97 |
3,32 |
4,84 |
5,71 |
8,47 |
k.г |
0,447 |
0,242 |
0 |
0,146 |
0,446 |
0,643 |
0,730 |
1,076 |
1,25 |
1,73 |
Анализ приведенных данных показывает, что формула (10.9) описывает сигналы, формы которых близки к прямоугольной ( > -0,(999)), линейной знакопеременной ( 1,5 ... 2), синусоидальной ( = 0) и дельта-функции Дирака ( > 5000). Изменяя один параметр функции, можно описывать сигнал различным спектральным составом: коэффициент гармоник меняется от 0 при = 0 до 173% при = 5000.
Функцию Дирака удобно использовать при реализации калибраторов — прецизионных источников переменного напряжения, выполненных на основе цифроаналоговых преобразователей, управляемых микропроцессорами. Задавая параметр формы и рассчитывая управляющий код для данного преобразователя, можно формировать напряжения требуемой формы, амплитуды и частоты (естественно, с теми ограничениями, которые накладывает аппаратная реализация калибратора).
Контрольные вопросы
1. Чем измерительный сигнал отличается от сигнала? Приведите примеры измерительных сигналов, используемых в различных разделах науки и техники.
2. Перечислите признаки, по которым классифицируются измерительные сигналы.
3. Чем аналоговый, дискретный и цифровой сигналы отличаются друг от друга?
4. Расскажите о характеристиках и параметрах случайных сигналов.
5. Что такое помехи, как они классифицируются? Приведите примеры помех.
6. Какие типы математических моделей измерительных сигналов используются в метрологии?
7. Сколько и каких параметров нужно знать для описания каждого из элементарных измерительных сигналов?
8. Что такое амплитудная, частотная и фазовая модуляции?
9. Что такое амплитудно-импульсная, частотно-импульсная и широт-но-импульсная модуляции?
10. Дайте определение операции квантования. Где и каким образом она используется в метрологии? Что такое погрешность квантования?
11. Дайте определение дискретизации. Расскажите о том, как проводится дискретизация измерительных сигналов. Что утверждает теорема Котельникова?
12. Какие интегральные параметры используются для описания переменных сигналов?