
- •Предисловие
- •Глава 1. Предмет и задачи метрологии
- •1.1. Предмет метрологии
- •1.2. Структура теоретической метрологии
- •1.3. Краткий очерк истории развития метрологии
- •Глава 2. Основные представления теоретической метрологии
- •2.1. Физические свойства и величины
- •2.1.1. Классификация величин
- •2.1.2. Свойства, проявляющие себя только в отношении эквивалентности. Понятие счета
- •2.1.3. Интенсивные величины, удовлетворяющие отношениям эквивалентности и порядка. Понятия величины и контроля
- •2.1.4. Экстенсивные величины, удовлетворяющие
- •Отношениям, эквивалентности, порядка и
- •Аддитивности. Понятия о единице величины и
- •Измерении
- •2.1.5. Шкалы измерений
- •2.2. Измерение и его основные операции
- •2.3. Элементы процесса измерений
- •2.4. Основные этапы измерений
- •2.5. Постулаты теории измерений
- •2.6. Классификация измерений
- •2.7. Понятие об испытании и контроле
- •Глава 3. Теория воспроизведения
- •3.2. Принципы построения систем единиц физических величин
- •3.3. Международная система единиц (система си)
- •3.4. Воспроизведение единиц физических величин и передача их размеров
- •3.4.1. Понятие о единстве измерений
- •3.4.2. Эталоны, единиц физических величин
- •3.4.3. Поверочные схемы
- •3.4.4. Способы поверки средств измерений
- •3.4.5. Стандартные образцы
- •3.5. Эталоны единиц системы си
- •Глава 4. Основные понятия теории погрешностей
- •4.1. Классификация погрешностей
- •4.2. Принципы оценивания погрешностей
- •4.3. Математические модели и характеристики погрешностей
- •4.4. Погрешность и неопределенность
- •4.5. Правила округления результатов измерений
- •Глава 5. Систематические погрешности
- •5.1. Систематические погрешности и их классификация
- •5.2. Способы обнаружения и убтранения систематических погрешностей
- •Глава 6. Случайные погрешности
- •6.1. Вероятностное описание случайных погрешностей
- •6.2. Числовые параметры законов распределения
- •6.2.1. Общие сведения
- •6.2.2. Понятие центра распределения
- •6.2.3. Моменты распределений
- •6.2.4. Энтропийное значение погрешности
- •6.3. Основные законы распределения
- •6.3.1. Общие сведения
- •6.3.2. Трапецеидальные распределения
- •6.3.3. Экспоненциальные распределения
- •6.3.4. Нормальное распределение (распределение Гаусса)
- •6.3.5. Уплощенные распределения
- •6.3.6. Семейство распределений Стъюдента
- •6.3.7. Двухмодальные распределения
- •6.4. Точечные оценки законов распределения
- •6.5. Доверительная вероятность и доверительный интервал
- •Глава 7. Грубые погрешности и методы их исключения
- •7.1. Понятие о грубых погрешностях
- •7.2. Критерии исключения грубых погрешностей
- •Глава 8. Обработка результатов измерений
- •8.1. Прямые многократные измерения
- •8.1,1. Равноточные измерения
- •8.1.2. Идентификация формы распределения результатов измерений
- •8.2. Однократные измерения
- •8.3. Косвенные измерения
- •8.4. Совместные и совокупные измерения
- •Глава 9. Суммирование погрешностей
- •9.1. Основы теории суммирования погрешностей
- •9.2. Суммирование систематических погрешностей
- •9.3. Суммирование случайных погрешностей
- •9.4. Суммирование систематических и случайных погрешностей
- •9.5. Критерий ничтожно малой погрешности
- •Глава 10. Измерительные сигналы
- •10.1. Классификация сигналов
- •10.1.1. Классификация измерительных сигналов
- •10.1.2. Классификация помех
- •10.2. Математическое описание измерительных сигналов
- •10.3. Математические модели элементарных измерительных сигналов
- •10.4. Математические модели сложных измерительных сигналов
- •10.5. Квантование и дискретизация измерительных сигналов
- •10.6. Интегральные параметры периодического сигнала
- •Глава 11. Средства измерений
- •11.1. Понятие о средстве измерений
- •11.2. Статические характеристики и параметры средств измерений
- •11.3. Динамические характеристики и параметры средств измерений
- •11.4. Классификация средств измерений
- •11.5. Элементарные средства измерений
- •11.6. Комплексные средства измерений
- •11.6.1. Измерительные приборы и установки
- •11.6.2. Измерительные системы и измерительно-вычислительные комплексы
- •11.7. Моделирование средств измерений
- •11.7.1. Структурные элементы и схемы средств измерений
- •11.7.2. Структурная схема прямого преобразования
- •11.7.3. Уравновешивающее преобразование
- •11.7.4. Расчет измерительных каналов средств измерений
- •Глава 12. Метрологические
- •12.2. Метрологические характеристики, предназначенные для определения результатов измерений
- •12.3. Метрологические характеристики погрешностей средств измерений
- •12.4. Характеристики чувствительности средств
- •Измерений к влияющим величинам.
- •Неинформативные параметры выходного
- •Сигнала
- •12.5. Нормирование динамических характеристик средств измерений
- •12.6. Метрологические характеристики влияния на инструментальную составляющую погрешности измерения
- •12.7. Комплексы нормируемых метрологических характеристик средств измерений
- •12.8. Расчет погрешностей средств измерений по нормированным метрологическим характеристикам
- •12.9. Классы точности средств измерений
- •Глава 13. Метрологическая надежность средств измерений
- •13.1. Основные понятия теории метрологической надежности
- •13.2. Изменение метрологических характеристик средств измерений в процессе эксплуатации
- •13.3. Математические модели изменения во времени погрешности средств измерений
- •13.3.1. Линейная модель изменения погрешности
- •13.3.2. Экспоненциальная модель изменения погрешности
- •13.3.3. Логистическая модель изменения погрешности
- •13.4. Показатели метрологической надежности средств измерений
- •13.5. Метрологическая надежность и межповерочные интервалы
- •Заключение
- •Приложение 1. Статистические таблицы
- •Приложение 2. Список основных государственных стандартов и нормативных документов в области метрологии
- •Приложение 3. Рабочая программа по курсу "Теоретическая метрология" специальности 190800 "Метрология и метрологическое обеспечение"
- •Тема 1. Предмет и задачи метрологии
- •Тема 2. Основные представления теоретической метрологии
- •Тема 3. Теория воспроизведения единиц физических величин и передачи их размеров (теория единства измерений)
- •Тема 4. Погрешности измерений
- •Тема 5. Систематические погрешности
- •Тема 6. Случайные погрешности
- •Тема 7. Грубые погрешности и методы их исключения
- •Тема 8. Обработка результатов измерений
- •Тема 9. Суммирование погрешностей
- •Тема 10. Измерительные сигналы
- •Тема 11. Средства измерений
- •Тема 12. Метрологическая служба Российской Федерации
- •Литература
- •Глава 1. Предмет и задачи метрологии 6
- •Глава 2. Основные представления 15
- •Глава 3. Теория воспроизведения 55
- •Глава 4. Основные понятия теории 87
- •Глава 5. Систематические погрешности 105
- •Глава 6. Случайные погрешности 118
- •Глава 7. Грубые погрешности 143
- •Глава 12. Метрологические 266
- •Глава 13. Метрологическая надежность средств измерений 292
- •105318, Москва, Измайловское ш., 4
- •432980, Г. Ульяновск, ул. Гончарова, 14
8.2. Однократные измерения
Прямые многократные измерения в большей мере относятся к лабораторным измерениям. Для производственных процессов более характерны однократные измерения. Однократные прямые измерения являются самыми массовыми и проводятся, если: при измерении происходит разрушение объекта измерения, отсутствует возможность повторных измерений, имеет место экономическая целесообразность. Эти измерения возможны лишь при определенных условиях:
• объем априорной информации об объекте измерений такой, что модель объекта и определение измеряемой величины не вызывают сомнений;
• изучен метод измерения, его погрешности либо заранее устранены, либо оценены;
• средства измерений исправны, а их метрологические характеристики соответствуют установленным нормам.
За результат прямого однократного измерения принимается полученная величина. До измерения должна быть проведена априорная оценка составляющих погрешности с использованием всех доступных данных. При определении доверительных границ погрешности результата измерений доверительная вероятность принимается, как правило, равной 0,95.
Методика обработки результатов прямых однократных измерений приведена в рекомендациях МИ 1552—86 'ТСИ. Измерения прямые однократные. Оценивание погрешностей результатов измерений". Данная методика применима при выполнении следующих условий: составляющие погрешности известны, случайные составляющие распределены по нормальному закону, а неисключенные систематические, заданные своими границами 0,, — равномерно.
Составляющими погрешности прямых однократных измерений являются:
• погрешности СИ, рассчитываемые по их метрологическим характеристикам;
• погрешность используемого метода измерений, определяемая на основе анализа в каждом конкретном случае;
• личная погрешность, вносимая конкретным оператором. Если последние две составляющие не превышают 15% погрешности СИ, то за погрешность результата однократного измерения принимают погрешность используемого СИ. Данная ситуация весьма часто имеет место на практике.
Названные составляющие могут состоять из неисключенных систематических и случайных погрешностей. При наличии нескольких систематических погрешностей, заданных своими границами ± i либо доверительными границами ± i(P), доверительная граница результата измерения соответственно может быть рассчитана по формуле
где i(Pj) — доверительная граница i-й неисключенной систематической погрешности, соответствующая доверительной вероятности Pj; kj — коэффициент, зависящий от Pj и определяемый так же, как и коэффициент k; k = k(m,P) — коэффициент, равный 0,95 при Р = 0,9 и 1,1 при Р = 0,95. При других доверительных вероятностях он определяется в соответствии с ГОСТ 8.207—76.
Случайные составляющие погрешности результата измерений выражаются либо своими СКО Sxi, либо доверительными границами i(Р). В первом случае доверительная граница случайной составляющей погрешности результата прямого однократного измерения определяется через его СКО Sx:
где zp — точка нормированной функции Лапласа, отвечающей вероятности Р. При Р = 0,95 zf = 2. Если СКО Sxi определены экспериментально при небольшом числе измерений (n < 30), то в данной формуле вместо коэффициента zp следует использовать коэффициент Стьюдента, соответствующий числу степеней свободы i-й составляющей, оценка которой произведена при наименьшем числе измерений.
В случае, когда случайные погрешности представлены доверительными границами ± ei(Рi), соответствующими разным доверительным вероятностям Рi, доверительная граница случайной погрешности результатов прямых однократных измерений
Найденные значения и (Р) используются для оценки погрешности результата прямых однократных измерений. В зависимости от соотношения и Sx суммарная погрешность определяется по одной из формул, приведенных в табл. 8.2. Значения коэффициента kp приведены в табл. 8.3.
Тaблица 8.2
Формулы для расчета погрешности результата прямых
однократных измерений (Р)
Значение /Sx |
Погрешность результата измерения (Р) |
/Sx < 0,8 |
(Р) |
0,8 q/Sx 8 |
kp[(P) + (Р)] |
q/Sx > 8 |
(Р) |
Таблица 8.3
Значение kr в зависимости от отношения 9/S, про доверительной
вероятности 0,95
/Sx |
0,8 |
1 |
2 |
3 |
4 |
6 |
6 |
7 |
8 |
k0,95 |
0,78 |
0,74 |
0,71 |
0,73 |
0,76 |
0,78 |
0,79 |
0,80 |
0,81 |
Кроме изложенного метода, суммирование случайных и систематических составляющих может проводиться и другими методами, ряд из которых рассмотрен в разд. 9.4.
Результат прямых однократных измерений дол-жен записываться в соответствии с рекомендациями МИ 1317-86 в виде х ± (Р) при доверительной вероятности Р = Рд.
Выше были рассмотрены прямые однократные измерения с точным оцениванием погрешностей, наиболее детально они проанализированы в [3]. В практике также имеют место прямые однократные измерения с приближенным оцениванием погрешности. Для них характерно оценивание погрешности полученного результата на основе метрологических характеристик, приведенных в нормативно-технической документации на используемые средства измерений. Поскольку эти характеристики относятся к любым экземплярам данного типа СИ, то у конкретного используемого средства действительные метрологические характеристики могут отличаться от нормированных.
Прямые однократные измерения с приближенным оцениванием погрешностей правомочны, если доказана возможность пренебрежения случайной составляющей погрешности измерения, т.е. можно обосновано считать, что среднее квадратическое отклонение Sx случайной составляющей меньше 1/8 суммарной границы неисключенных систематических составляющих погрешности результата измерения.
В простейшем случае, когда влияющие величины соответствуют нормальным условиям, погрешность результата прямого однократного измерения равна пределу основной погрешности средства измерения СИ, определяемой по нормативно-технической документации. Результат измерения запишется в виде = СИ. Доверительная вероятность не указывается, но, как правило, подразумевается, что она равна 0,96. При проведении измерений в условиях, отличных от нормальных, необходимо определять и учитывать пределы дополнительных погрешностей. Возможная методика суммирования основных и дополнительных погрешностей однократных измерений приведена в [3].
Пример 8.1. Оценить погрешность результата однократного измерения напряжения U = 0,9 В на сопротивлении R = 4 Ом, выполненного вольтметром класса точности 0,5 с верхним пределом измерения Uп = 1,5 В и внутренним сопротивлением Rv = 1000 Ом. Известно, что дополнительные погрешности показаний вольтметра из-за магнитного поля и температуры не превышают соответственно мп = 0,75% и т = 0,3% допускаемой предельной погрешности.
Предел допускаемой относительной погрешности вольтметра на отметке 0,9 В составляет х = СИU0/U = 0,83%. При подсоединении вольтметра исходное напряжение U, изменится из-за наличия Rv и составит
Тогда методическая погрешность, обусловленная конечным значением Rv, в относительной форме
Данная погрешность является систематической и должна быть внесена в результат в виде поправки q = - m= 0,4 % или в абсолютной форме на отметке 0,9 В а= Uq/100 = 0,004 В. Тогда результат измерения с учетом поправки U = 0,9 + 0,004 = 0,904 В.
Поскольку
основная и дополнительная погрешности
заданы своими граничными значениями,
то они могут рассматриваться как
неисключенные систематические
погрешности и соответственно
суммироваться. При доверительной
вероятности 0,95 доверительная граница
неисключенной систематической
погрешности
= 1,3%. В абсолютной формеC=CU/100=0,012
В. Поскольку
> q,
то окончательный результат измерения
записывается в виде U
= 0,9 В;
= ±0,01 В; Р = 0,95.