Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МЕТРОЛОГИЯ ДЛЯ СТУДЕНТОВ_1 / по литре / Studmed.ru_sergeev-ag-krohin-vv-metrologiya_88b517bb888.doc
Скачиваний:
408
Добавлен:
11.02.2015
Размер:
4.02 Mб
Скачать

6.3.7. Двухмодальные распределения

К ним относятся дискретное двузначное, арксинусоидальное и двухмодальные остро- и кругловершинные распределения.

Дискретное двузначное распределение — это распределение, при котором с равными вероятностями встречаются только два значения случайной величины. В центрированном виде (рис. 6.9) оно описывается формулой

где (х) — дельта-функция Дирака; ±А — возможные значения случайной величины.

При дискретном двузначном распределении СКО равно значению параметра А,  = 1, к = 1, k = 0.

Рис. 6.9. Дискретное двузначное распределение

Дискретное двузначное распределение может быть приближенно предcтавлено в виде суммы двух нормальных распределений с одинаковыми по модулю, но противоположными по знаку МО и при стремлении r нулю их СКО:

Арксинусоидальное распределение (рис. 6.10) описывается выражением:

где А — параметр распределения. Его СКО равно , = 1,5, к = 0,816, k = 1,11.

Рис. 6.10. Арксинусоидальное распределение при А = 1

Остро- и кругловершинные двухмодальные распределения получаются как композиция дискретного двузначного и экспоненциального распределений с различными значениями коэффициента а (рис. 6.11). При  < 2 получаются островершинные, при  > 2 — кругловершинные распределения.

Рис. 6.11. Островершинные (а) и кругловершинные (б)

двухнедельные распределения

Основными параметрами таких распределений являются:

• показатель относительного содержания в композиции дискретной составляющей Сд= д /экс= А/экс, где д и экс — СКО дискретного и экспоненциального распределений. Как правило, Сд  (0;2) .

Чем больше показатель Сд, тем больше провал. При Сд = 0 провал на графике распределения отсутствует;

• показатель степени  для экспоненциальных распределений, который обычно лежит в пределах от 0,5 до 2.

Островершинные распределения получаются при использовании некоторых высокоточных цифровых вольтметров, а кругловершинные распределения имеют погрешности от механического гистерезиса элементов приборов и датчиков.

6.4. Точечные оценки законов распределения

Рассмотренные выше функции распределения описывают поведение непрерывных случайных величин, т.е. величин, возможные значения которых неотделимы друг от друга и непрерывно заполняют некоторый конечный или бесконечный интервал. На практике все результаты измерений и случайные погрешности являются величинами дискретными, т.е. величинами Xj, возможные значения которых отделимы друг от друга и поддаются счету. При использовании дискретных случайных величин возникает задача нахождения точечных оценок параметров их функций распределения на основании выборок — ряда значений хи принимаемых случайной величиной х в п независимых опытах. Используемая выборка должна быть репрезентативной (представительной), т.е. должна достаточно хорошо представлять пропорции генеральной совокупности.

Оценка параметра называется точечной, если она выражается одним числом. Задача нахождения точечных оценок — частный случай статистической задачи нахождения оценок параметров функции распределения случайной величины на основании выборки. В отличие от самих параметров их точечные оценки являются случайными величинами, причем их значения зависят от объема экспериментальных данных, а закон распределения — от законов распределения самих случайных величин.

Точечные оценки могут быть состоятельными, несмещенными и эффективными. Состоятельной называется оценка, которая при увеличении объема выборки стремится по вероятности к истинному значению числовой характеристики. Несмещенной называется оценка, математическое ожидание которой равно оцениваемой числовой характеристике. Наиболее эффективной считают ту из нескольких возможных несмещенных оценок, которая имеет наименьшую дисперсию. Требование несмещенности на практике не всегда целесообразно, так как оценка с небольшим смещением и малой дисперсией может оказаться предпочтительнее несмещенной оценки с большой дисперсией. На практике не всегда удается удовлетворить одновременно все три этих требования, однако выбору оценки должен предшествовать ее критический анализ со всех перечисленных точек зрения.

Наиболее распространенным методом получения оценок является метод наибольшего правдоподобия [4, 48], который приводит к асимптотически несмещенным и эффективным оценкам с приближенно нормальным распределением. Среди других методов можно назвать методы моментов [24] и наименьших квадратов.

Точечной оценкой МО результата измерений является среднее арифметическое значение измеряемой величины

(6.8)

При любом законе распределения оно является состоятельной и несмещенной оценкой, а также наиболее эффективной по критерию наименьших квадратов.

Точечная оценка дисперсии, определяемая по формуле

(6.9)

является несмещенной и состоятельной.

СКО случайной величины х определяется как корень квадратный из дисперсии. Соответственно его оценка может быть найдена путем извлечения корня из оценки дисперсии. Однако эта операция является нелинейной процедурой, приводящей к смещенности получаемой таким образом оценки. Для исправления оценки СКО вводят поправочный множитель k(n), зависящий от числа наблюдений n. Он изменяется от k(3) = 1,13 до k()  1,03. Оценка среднего квадратического отклонения

Полученные оценки МО и СКО являются случайными величинами. Это проявляется в том, что при повторениях серий из n наблюдений каждый раз будут получаться различные оценки х̅ и ̃. Рассеяние этих оценок целесообразно оценивать с помощью СКО Sx̅ и S. Оценка СКО среднего арифметического значения

(6.10)

Оценка СКО [4, 48] среднего квадратического отклонения

Отсюда следует, что относительная погрешность определения СКО может быть оценена [4] как

Она зависит только от эксцесса и числа наблюдений в выборке и не зависит от СКО, т.е. той точности, с которой производятся измерения. Ввиду того, что большое число измерений проводится относительно редко, погрешность определения а может быть весьма существенной. В любом случае она больше погрешности из-за смещенности оценки, обусловленной извлечением квадратного корня и устраняемой поправочным множителем k(n). В связи с этим на практике пренебрегают учетом смещенности оценки СКО отдельных наблюдений и определяют его по формуле

(6.11)

т.е. считают k(n) = l.

Иногда оказывается удобнее использовать следующие формулы для расчета оценок СКО отдельных наблюдений и результата измерения:

(6.12)

Точечные оценки других параметров распределений используются значительно реже. Оценки коэффициента асимметрии и эксцесса находятся по формулам [55]

Определение рассеяния оценок коэффициента асимметрии и эксцесса описывается различными формулами в зависимости от вида распределения. Краткий обзор этих формул приведен в [4].