Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МЕТРОЛОГИЯ ДЛЯ СТУДЕНТОВ_1 / по литре / Studmed.ru_sergeev-ag-krohin-vv-metrologiya_88b517bb888.doc
Скачиваний:
408
Добавлен:
11.02.2015
Размер:
4.02 Mб
Скачать

6.2.3. Моменты распределений

Все моменты представляют собой некоторые средние значения, причем если усредняются величины, отсчитываемые от начала координат, то моменты называют начальными, а если от центра распределения, то центральными. Начальные и центральные моменты г-го порядка определяются соответственно по формулам

Нулевой начальный момент равен единице. Он используется для задания условия нормирования плотности распределения:

Также с помощью начального момента нулевого порядка вводится понятие медианы распределения. Первый начальный момент - МО случайной величины:

Для результатов измерений оно представляет собой оценку истинного значения измеряемой величины. Начальные и центральные моменты случайной погрешности Д совпадают между собой и с центральными моментами результатов измерений: r [] = r [] = г [х], поскольку МО случайной погрешности равно нулю. Следует также отметить, что первый центральный момент тождественно равен нулю. Важное значение имеет второй центральный момент

называемый дисперсией я являющийся характеристикой рассеивания случайной величины относительного МО. Значительно чаще в качестве меры рассеивания используется среднее квадратическое отклонение

имеющее такую же размерность, как и МО. Для примера на рис. 6.3 показан вид нормального распределения при различных значениях СКО. Математическое ожидание и дисперсия являются наиболее часто применяемыми моментами, поскольку они определяют важные черты распределения: положение центра и степень разбросанности результатов относительно него. Для более подробного описания распределения используются моменты более высоких порядков.

Рис. 6.3. Вид нормального распределения при Хц= 5 и СКО — 0,5; 1; 2 и 5

Третий центральный момент

служит характеристикой асимметрии, или скошенности распределения. С его использованием вводится коэффициент асимметрии v = 3[Х]/3. Для нормального распределения коэффициент асимметрии равен нулю. Вид законов распределения при различных значениях коэффициента асимметрии приведен на рис. 6.4,а.

Рис. 6.4. Вид дифференциальной функции распределения

при различных значениях коэффициента асимметрии (a)

и эксцесса (б)

Четвертый центральный момент

служит для характеристики плоско- или островершинности распределения. Эти свойства описываются с помощью эксцесса

(6.2)

Значения коэффициента ' лежат в диапазоне от -2 до . Для нормального распределения он равен 0. Чаще эксцесс задается формулой

(6.3)

Его значения лежат в диапазоне от 1 до . Для нормального распределения он равен трем. Вид дифференциальной функции распределения при различных значениях эксцесса показан на рис. 6.4,6.

Для удобства часто используют контрэксцесс

Значения контрэксцесса лежат в пределах от 0 до 1. Для нормального закона он равен 0,577.

6.2.4. Энтропийное значение погрешности

Развитие теории вероятностей применительно к процессам получения измерительной информации привело к созданию вероятностной [4, 52] теории информации. С точки зрения этой теории смысл измерения состоит в сужении интервала неопределенности от значения, известного до его проведения, до величины d, называемой энтропийным интервалом неопределенности, ставшей известной после измерения. Энтропийный интервал определяется по формуле

(6.4)

где э — энтропийное значение погрешности;

— энтропия действительного значения х измеряемой величины вокруг полученного после измерения значения хд, т.е. энтропия погрешности измерений; р(х) — плотность распределения вероятности измеряемой величины.

Основное достоинство информационного подхода к описанию измерений состоит в том, что размер энтропийного интервала неопределенности может быть найден строго математически для любого закона распределения. Это устраняет исторически сложившийся произвол, неизбежный при волевом назначении различных значений доверительной вероятности. Например, для нормального распределения и. Для распределения Симпсона

Соотношение между энтропийным э и средним квадратическим  значениями погрешности различно для разных законов распределения, и его удобнее характеризовать энтропийным коэффициентом k=э/ данного распределения (табл. 6.1).

Таблица 6.1

Значения коэффициента k для различных законов распределения

Закон распределения

k

Вид распределения

k

Нормальное (Гаусса)

2,07

Равномерное

1,73

Треугольное (Симпсона)

2,02

Арксинусоидальное

1,11

Лапласа

1,93

Дискретное двузначное

0

Стьюдента (число степеней свободы — 4)

1,90

Коши

0