
- •Типы кристаллических решеток важнейших металлических элементов
- •1.1 Продукция металлургии
- •1. Применяемые материалы в доменном производстве.
- •2. Выплавка чугуна
- •3. Физико-химическая сущность процесса
- •4. Продукты доменной плавки
- •1. Техногенные побочные продукты промышленности как сырьё для производства стройматериалов
- •2. История развития вопроса о применении шлаков
- •3. Доменные гранулированные шлаки
- •4. Грануляция доменных шлаков
- •5. Шлакопортландцемент
- •6. Процесс получения шлакопортландцемента
- •7. Применение шлакопортландцемента
- •8. Применение шлаков при производстве других строительных материалов. Шлаки от сжигания углей
- •9. Классификация шлаков от сжигания углей
- •10. Применение золошлаковых отходов
- •11. Шлаки черной и цветной металлургии
- •12. Шлаковая пемза
- •13. Процесс производства шлаковой пемзы
- •14. Применение шлаковой пемзы
- •10. Глава VI. Плавильные печи черной металлургии § 20. Мартеновские печи
- •11. Скрап-рудный мартеновский процесс с использованием твердых окислителей
- •§ 2. Механическое оборудование печи
- •§ 3. Форма и размеры плавильного пространства электродуговой печи
- •§ 4. Футеровка основной электродуговой печи
- •§ 5. Электроды
- •§ 6. Электрооборудование печи
- •§ 7. Выплавка стали методом полного окисления
- •§ 8. Жаропрочные стали и сплавы
- •§ 9. Металлургическое производство с точки зрения охраны окружающей среды
- •§ 2. Системы газоотвода и газоочистки
- •§ 10. Утилизация технологических выбросов
- •§ 11. Утилизация шлаков сталеплавильного производства
- •1. Особенности разливки стали
- •2. Ковши для разливки стали
- •3. Способы изготовления стальных отливок
- •3.1 Получение штучных фасонных отливок
- •3.2 Разливка стали в изложницы
- •3.3 Затвердевание и строение стального слитка в изложнице
- •3.4 Обработка жидкого металла вне сталеплавильного агрегата
- •3.5 Непрерывная разливка стали
- •4. Опыт повышения качества стали на оао «Магнитогорский металлургический комбинат»
- •5. Особенности и недостатки непрерывной разливки стали
- •4 Раскисление и легирование стали
- •4.1 Раскисление стали
- •4.2 Легирование стали
- •19. Обработка металлов давлением.
- •21. Введение
- •1 Сущность процесса прокатки
- •2 Устройство и классификация прокатных станов
- •2.1 Классификация станов по типу рабочих клетей
- •2.2 Классификация станов по назначению
- •3 Основы технологии прокатного производства
- •4 Технология производства отдельных видов проката
- •Заключение
4. Опыт повышения качества стали на оао «Магнитогорский металлургический комбинат»
В качестве примера рассматривается проект реконструкции металлургического производства ОАО «Магнитогорский металлургический комбинат» без остановки действующего производства.
Для обеспечения необходимых требований к качеству металла установлены агрегат доводки стали (АДС) и агрегат ковш-печь (АКП). Выплавку металла проводят в двух двухванных сталеплавильных агрегатах (ДСА), вместимость которых уменьшена с 285 до 175 т для соблюдения оптимального времени разливки. Для производства сортовой заготовки используется следующая технологическая схема: ДСА > АКП или АДС > МНЛЗ.
Разливка стали на сортовых МНЛЗ осуществляется открытой струей. Высокая насыщенность кислородом металла, выплавленного в ДСА, и дополнительное газонасыщение металла вследствие вторичного окисления на разливке отражаются на качестве сортового проката, приводят к появлению поверхностных дефектов из-за нарушения сплошности металла, обусловленного образованием подкорковых газовых пузырей. Для улучшения качества металла проведен комплекс работ, направленный на уменьшение окисленности металла как в ДСА, так и на установках внепечной обработки.
Рис. 13. Зависимость окисленности металла в печи от содержания углерода на выпуске: 1 -- без применения алюмофлюса; 2 -- с применением алюмофлюса (3.8 - 4.9 кг/т).
Применение для предварительного раскисления металла в печи расчетного количества карбида кремния, содержащего ~ 80 % Si и 4 % С, и углеродсодержащего материала УМ-5, содержащего 70 % С и 14 % SiC, позволяет снизить окисленность металла на 75-100 ррm.
Вопросы снижения окисленности металла в печи изучали также при изменении содержания углерода в металле на выпуске и при подаче в печь до выпуска разного количества алюмофлюса, содержащего 4 - 7 % металлического алюминия.
Рис. 14. Зависимость окисленности металла от количества присаживаемого алюмофлюса при постоянном содержании углерода на выпуске.
В качестве критериев оценки были приняты показатели окисленности металла по приходе на АКП и угары раскислителей, применяемых на выпуске, при выплавке стали СтЗсп. Изменение окисленности стали в ковше по приходе плавки на АКП от содержания углерода в металле перед выпуском плавки из печи показано на рис. 13, а изменение окисленности металла от количества присаживаемого алюмофлюса в печь -- на рис. 14.
При увеличении содержания углерода в металле перед выпуском и при предварительном раскислении в печи достигается уменьшение окисленности металла, и, как следствие, увеличивается усвоение ферросплавов, применяемых для раскисления . По разработанной технологии содержание углерода на выпуске должно составлять не менее 0,03 %, а металл должен быть предварительно раскислен в печи алюмо-флюсом (до 7,0 кг/т) либо соответствующим количеством углеродсодержащего материала УМ-5 или карбида кремния.
Понижение окисленности металла на АКП. Для изучения возможности более глубокого раскисления металла и уменьшения пораженности слитка внутренним газовым пузырем на АКП были проведены опытные плавки с применением порошковой проволоки, содержащей силикокальций. Анализ опытных плавок с силикокальцием позволил сделать вывод о том, что применение этого материала приводит к снижению окисленности металла вследствие его более глубокого раскисления, в результате чего имеет место уменьшение балла внутреннего газового пузыря с ростом общего расхода силикокальция (рис. 15).
Рис. 15. Зависимость внутреннего газового пузыря от расхода силикокальция
Рис. 16. Зависимость уменьшения содержания FeO в шлаках на АКП от расхода карбида кремния
Рис. 17. Зависимость степени снижения окисленности металла от расхода карбида кремния
Для уменьшения содержания кислорода в металле и шлаке за счет диффузионного раскисления металла были проведены опытные плавки стали СтЗсп с применением карбида кремния для раскисления шлака. При увеличении расхода карбида кремния до 1 кг/т происходит пропорциональное уменьшение содержания FeO в шлаке (рис. 16) и окисленности металла (рис. 17).
Уменьшение окисленности металла в печи привело не только к снижению окисленности по приходе на агрегаты внепечной обработки, но и к уменьшению угара кремния и марганца в среднем на 8 %. За счет уменьшения содержания кислорода в стали отмечено улучшение качества металла: уменьшение краевых точечных загрязнений на 12 %, газовых пузырей -- внутреннего на 70 %, поверхностного на 21 %.