
ИДЗ_3_Зикратова_31
.docxМИНОБРНАУКИ РОССИИ
Санкт-Петербургский государственный
электротехнический университет
«ЛЭТИ» им. В.И. Ульянова (Ленина)
Кафедра МНЭ
ИДЗ №3
по дисциплине «Методы анализа структур электроники и микросистемной техники»
Тема: ПРОВЕДЕНИЕ АНАЛИЗА МЕТОДОМ РФЭС И МОДЕЛИРОВАНИЕ СПЕКТРА ВЫДАННОГО ОБРАЗЦА
Вариант 31
Студентка гр. 9282 |
|
Зикратова А. А. |
Преподаватель |
|
Андреева Н. В. |
Санкт-Петербург
2023
Цель работы: проведение анализа методом РФЭС и моделирование спектра TiIn0,94Yb0,06Te2.
Моделирование спектра образца
Пусть E0 = AlKα = Eсв(AlK) – Eсв(AlL3) = 1560 – 73 = 1487 эВ – наиболее часто применяющееся рентгеновское излучение (анод из Al); Eфэ < 2 кэВ для линий моделируемого спектра.
1) Качественный спектр TlIn0,94Yb0,06Te2
Eфэ(XM1) = AlKα - Eсв(XM1)
Eфэ(XN4) = AlKα - Eсв(XN4)
Пример расчёта:
Eфэ(InM2) = AlKα - Eсв(InM2) = 1487– 702 = 785 эВ
Eфэ(TeM3) = AlKα - Eсв(TeM3) = 1487 – 819 = 668 эВ
Eфэ(YbN4) = AlKα - Eсв(YbN4) = 1487 – 197 = 1290 эВ
Eфэ(TlN7) = AlKα - Eсв(TlN7) = 1487 – 118 = 1369 эВ
Энергии фотоэлектронов элементов для различных линий спектра сведены в таблицу 1:
Из таблицы 1 видно, что энергии фотоэлектронов Eфэ(InN1) и Eфэ(TlN6) совпадают → эти линии не будут отражены в количественном спектре образца.
В результате получен качественный спектр излучения образца:
Рис. 1 – Качественный спектр излучения образца при РФЭС
2) Количественный спектр TlIn0,94Yb0,06Te2
Расчёт атомных процентов (долей) – из ИДЗ №2:
=
=
= 0,25
=
=
= 0,235
=
=
= 0,015
=
=
= 0,5
Пример расчёта поперечных сечений фотоэффекта:
σph(N1Yb)
=
*
=
*
≈
3,08*10-4
А2
σph(M4Te)
=
*
=
*
≈
4,8*10-4
А2
Расчёт средней концентрации валентных электронов для TlIn0,94Yb0,06Te2 для расчёта частоты плазмона:
ne(In)
=
=
* 3 ≈ 1,15*1023
эл/см3
ne(Te)
=
=
* 6 ≈ 1,76*1023
эл/см3
ne(Yb)
=
=
* 2 ≈ 4,85*1022
эл/см3
ne(Tl)
=
=
* 3 ≈ 1,049*1023
эл/см3
nср = 0,25* ne(Tl) + 0,235* ne(In) + 0,015* ne(Yb) + 0,5* ne(Te) = 0,25* 1,049*1023 + 0,235* 1,15*1023 + 0,015* 4,85*1022 + 0,5* 1,76*1023 ≈ 1,42*1023 эл/см3 = 1,42*1029 эл/м3
Потери энергии фотоэлектронов в твёрдом теле связаны с ионизационными потерями и возбуждением плазмона.
Расчёт частоты и энергии плазмона (для оценки потери энергии фотоэлектрона на возбуждение плазмона):
ωp
=
=
≈ 2,13*1016
с-1
h
ωp
= 6,6*10-16*2,13*1016
≈ 14,02
эВ
Для расчёта интенсивности излучения каждой линии спектра
По пути на выход из материала образца фотоэлектрон (Eфэ(InM1) = 661 эВ) может провзаимодействовать с электронами с: InM4, InM5, InN1, TeM4, TeM5, TeN1, YbN1,YbN2, YbN3, YbN4, YbN5, TlN3, TlN4, TlN5, TlN6, TlN7.
Пример расчёта (для таблицы 3) поперечных сечений ударной ионизации, количества электронов, интенсивности, длины свободных пробегов, определяемые плазмонными и ионизационными потерями:
σ(InM4)
=
=
≈ 2,18*10-3
2
σ(YbN4)
=
=
≈ 5*10-3
2
n(M4) = 2*g(M4) + 1 = 2*1,5 + 1 = 4, n(N4) = 2*g(N4) + 1 = 2*1,5 + 1 = 4
= N(In)*
n(M4)*
σ(InM4)
= 0,235*4*2,18*10-3
≈ 2,05*10-3
-1
= N(Yb)*
n(N4)*
σ(YbN4)
= 0,015*4*5*10-3
≈ 3*10-4
-1
=
+
+ … +
+ … +
= 2,05*10-3
+ 2,09*10-3
+ … + 3*10-4
+ … + 4,17*10-3
≈ 4,18*10-2
-1
=
*ln(
)
=
*ln(
)
=
*ln(
)
≈ 1,04*10-1
-1
=
=
≈ 6,83
Y(InM1) = N(In)* σph(InM1)* = 0,235*1,15*10-3*6,83 ≈ 1,85*10-3
По пути на выход из материала образца фотоэлектрон (Eфэ(InM2) = 785 эВ – таблица 4) может провзаимодействовать с электронами с: InM2, InM3, InM4, InM5, InN1, TeM4, TeM5, TeN1, YbN1,YbN2, YbN3, YbN4, YbN5, TlN2, TlN3, TlN4, TlN5, TlN6, TlN7.
Средняя длина свободного пробега, определяемая плазмонными механизмами потерь энергии (для фотоэлектрона In с подуровня M2 и M3), интенсивности (таблицы 4, 5):
=
*ln(
)
=
*ln(
)
=
*ln(
)
≈ 9,09*10-2
-1
=
*ln(
)
=
*ln(
)
=
*ln(
)
≈ 8,74*10-2
-1
=
=
≈ 7,79
=
=
≈ 7,99
Y(InM2) = N(In)* σph(InM2)* = 0,235*7,67*10-4*7,79 ≈ 1,4*10-3
Y(InM3) = N(In)* σph(InM3)* = 0,235*6,68*10-4*7,99 ≈ 1,25*10-3
Средняя длина свободного пробега, определяемая плазмонными механизмами потерь энергии (для фотоэлектрона In с подуровня M4 и M5), интенсивности (таблицы 6, 7):
=
*ln(
)
=
*ln(
)
=
*ln(
)
≈ 7,24*10-2
-1
=
*ln(
)
=
*ln(
)
=
*ln(
)
≈ 7,19*10-2
-1
=
=
≈ 9,58
=
=
≈ 9,64
Y(InM4) = N(In)* σph(InM4)* = 0,235*2,54*10-4*9,58 ≈ 5,71*10-4
Y(InM5) = N(In)* σph(InM5)* = 0,235*2,43*10-4*9,64 ≈ 5,5*10-4
Подобным образом ведётся расчёт для линий TeM1, TeM2, TeM3, TeM4, TeM5, TeN1,
Средняя длина свободного пробега, определяемая плазмонными механизмами потерь энергии (для фотоэлектрона Yb с подуровня N1 и N2), интенсивности (таблицы 14, 15):
=
*ln(
)
=
*ln(
)
=
*ln(
)
≈ 7,45*10-2
-1
=
*ln(
)
=
*ln(
)
=
*ln(
)
≈ 6,94*10-2
-1
=
=
≈ 9,34
=
=
≈ 10,02
Y(
)
= N(Yb)* σph(
)*
= 0,015*2,54*10-4*9,34
≈ 3,08*10-4
Y(
)
= N(Yb)* σph(
)*
= 0,015*2,43*10-4*10,02
≈ 1,83*10-4
Средняя длина свободного пробега, определяемая плазмонными механизмами потерь энергии (для фотоэлектрона Tl с подуровня N2 и N3), интенсивности (таблицы 20, 21):
=
*ln(
)
=
*ln(
)
=
*ln(
)
≈ 9,28*10-2
-1
=
*ln(
)
=
*ln(
)
=
*ln(
)
≈ 8,29*10-2
-1
=
=
≈ 7,62
=
=
≈ 8,33
Y(
)
= N(Tl)* σph(
)*
= 0,25*8,23*10-4*7,62
≈ 1,57*10-3
Y(
)
= N(Tl)* σph(
)*
= 0,25*5,38*10-4*8,33
≈ 1,12*10-3
Из таблиц 3-24 интенсивности в абсолютных и относительных единицах сведены в таблицу 25:
В спектре излучения (рис. 2) отсутствуют линии N1In, N6Tl, т. к. они соответствуют одной и той же энергии и их отображение было бы некорректным в количественном спектре.
На основании расчётов для каждой линии ионизационных потерь, плазмонных потерь, интенсивности построен количественный спектр излучения образца при РФЭС:
Рис. 2 – Количественный спектр излучения элементов образца для фотоэлектронов, образовавшихся в результате поглощения рентгеновского излучения AlKα
Вывод: в данной работе были смоделированы качественный и количественный спектры образца TlIn0,94Yb0,06Te2, полученные методом РФЭС, при котором поверхность образца подвергалась воздействию мягкого рентгеновского излучения (AlKα), в результате которого образовывались фотоэлектроны.