Добавил:
Меня зовут Катунин Виктор, на данный момент являюсь абитуриентом в СГЭУ, пытаюсь рассортировать все файлы СГЭУ, преобразовать, улучшить и добавить что-то от себя Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Экономика / Теория / lexii_po_ise.doc
Скачиваний:
279
Добавлен:
09.08.2023
Размер:
2.89 Mб
Скачать

Тема 10. Интеллектуальные технологии и системы. Применение интеллектуальных технологий в экономических системах

Искусственный интеллект (ИИ) (англ. Artificial intelligence, AI) — это наука и разработка интеллектуальных машин и систем, особенно интеллектуальных компьютерных программ, направленных на то, чтобы понять человеческий интеллект. При этом используемые методы не обязаны быть биологически правдоподобны. Но проблема состоит в том, что неизвестно какие вычислительные процедуры мы хотим называть интеллектуальными. А так как мы понимаем только некоторые механизмы интеллекта, то под интеллектом в пределах этой науки мы понимаем только вычислительную часть способности достигнуть целей в мире.

Различные виды и степени интеллекта существуют у многих людей, животных и некоторых машин, интеллектуальных информационных систем и различных моделях экспертных систем с различными базами знаний. При этом как видим такое определение интеллекта не связанно с пониманием интеллекта у человека — это разные вещи. Более того эта наука моделирует человеческий интеллект, так как с одной стороны, можно изучить кое-что о том, как заставить машины решить проблемы, наблюдая других людей, а с другой стороны, большинство работ в ИИ вовлекают изучение проблем, которые требуется решать человечеству в промышленном и технологическом смысле. Поэтому исследователи ИИ вольны использовать методы, которые не наблюдаются у людей, если это необходимо для решения конкретных проблем.

Именно в таком смысле термин ввел Джон Маккарти в 1956 году на конференции в Дартмутском университете, и до сих пор, несмотря на критику тех, кто считает, что интеллект — это только биологический феномен, в научной среде термин сохранил свой первоначальный смысл, несмотря на явные противоречия с точки зрения человеческого интеллекта.

В философии не решён вопрос о природе и статусе человеческого интеллекта. Нет и точного критерия достижения компьютерами «разумности», хотя на заре искусственного интеллекта был предложен ряд гипотез, например, тест Тьюринга или гипотеза Ньюэлла — Саймона. Поэтому, несмотря на наличие множества подходов, как к пониманию задач ИИ, так и созданию интеллектуальных информационных систем можно выделить два основных подхода к разработке ИИ:

  1. Нисходящий, семиотический — создание экспертных систем, баз знаний и систем логического вывода, имитирующие высокоуровневые психические процессы: мышление, рассуждение, речь, эмоции, творчество и т. д.;

  2. Восходящий, биологический — изучение нейронных сетей и эволюционных вычислений, моделирующих интеллектуальное поведение на основе более мелких «неинтеллектуальных» элементов.

Причем последний подход, как правило, является критикой первого подхода, а сам скорее не относится к науке о ИИ в смысле данном Джоном Маккарти — их объединяет, только общая конечная цель.

История искусственного интеллекта, как нового научного направления, начинается в середине XX века. К этому времени уже было сформировано множество предпосылок его зарождения: среди философов давно шли споры о природе человека и процессе познания мира, нейрофизиологи и психологи разработали ряд теорий относительно работы человеческого мозга и мышления, экономисты и математики задавались вопросами оптимальных расчётов и представления знаний о мире в формализованном виде; наконец, зародился фундамент математической теории вычислений — теории алгоритмов — и были созданы первые компьютеры.

Возможности новых машин в плане скорости вычислений оказались больше человеческих, поэтому в учёном сообществе закрался вопрос: каковы границы возможностей компьютеров и достигнут ли машины уровня развития человека? В 1950 году один из пионеров в области вычислительной техники, английский учёный Алан Тьюринг, пишет статью под названием «Может ли машина мыслить?», в которой приводит свои ответы на подобные вопросы, и описывает процедуру, с помощью которой можно будет определить момент, когда машина сравняется в плане разумности с человеком, получившей название теста Тьюринга.

Согласно мнению многих учёных, важным свойством интеллекта является способность к обучению. Таким образом, на первый план выходит инженерия знаний, объединяющая задачи получения знаний из простой информации, их систематизации и использования. Достижения в этой области затрагивают почти все остальные направления исследований ИИ. Здесь можно выделить две важные подобласти. Первая из них — машинное обучение — касается процесса самостоятельного получения знаний интеллектуальной системой в процессе её работы. Второе связано с созданием экспертных систем — программ, использующих специализированные базы знаний для получения достоверных заключений по какой-либо проблеме.

К области машинного обучения относится большой класс задач на распознавание образов. Например, это распознавание символов, рукописного текста, речи, анализ текстов. Многие задачи успешно решаются с помощью биологического моделирования. Особо стоит упомянуть компьютерное зрение, которое связано ещё и с робототехникой.

В настоящий момент в создании искусственного интеллекта наблюдается интенсивная переработка всех предметных областей имеющих хоть какое-то отношение к ИИ в базы знаний. Практически все подходы были опробованы, но к возникновению искусственного разума ни одна исследовательская группа так и не подошла. Исследования ИИ влились в общий поток таких технологий как информатика, экспертные системы, нанотехнология, молекулярная биоэлектроника, теоретическая биология, и т.д.

Применение искусственного интеллекта.

Некоторые из самых впечатляющих гражданских ИИ систем:

  • Deep Blue — победил чемпиона мира по шахматам. (Mycin — одна из ранних экспертных систем, которая могла диагностировать небольшой набор заболеваний, причем часто так же точно, как и доктора.

  • Распознавание речи. Системы такие как ViaVoice способны обслуживать потребителей.

  • Роботы в ежегодном турнире RoboCup соревнуются в упрощённой форме футбола.

  • Банки применяют системы искусственного интеллекта (СИИ) в страховой деятельности (актуарная математика) при игре на бирже и управлении собственностью. В августе 2001 года роботы выиграли у людей в импровизированном соревновании по трейдингу (BBC News, 2001).

  • Методы распознавания образов, (включая, как более сложные и специализированные, так и нейронные сети) широко используют при оптическом и акустическом распознавании (в том числе текста и речи), медицинской диагностике, спам-фильтрах, в системах ПВО (определение целей), а также для обеспечения ряда других задач национальной безопасности.

  • Разработчики компьютерных игр вынуждены применять ИИ той или иной степени проработанности. Стандартными задачами ИИ в играх являются нахождение пути в двухмерном или трёхмерном пространстве, имитация поведения боевой единицы, расчёт верной экономической стратегии и так далее.

ЭС- это набор программ, выполняющий функции эксперта при решении задач из некоторой предметной области. ЭС выдают советы, проводят анализ, дают консультации, ставят диагноз. Практическое применение ЭС на предприятиях способствует эффективности работы и повышению квалификации специалистов.

Главным достоинством экспертных систем является возможность накопления знаний и сохранение их длительное время. В отличии от человека к любой информации экспертные системы подходят объективно, что улучшает качество проводимой экспертизы. При решении задач, требующих обработки большого объема знаний, возможность возникновения ошибки при переборе очень мала.

ЭС выдают советы, проводят анализ, выполняют классификацию, дают консультации и ставят диагноз. Они ориентированы на решение задач, обычно требующих проведения экспертизы человеком-специалистом. В отличие от машинных программ, использующий процедурный анализ, ЭС решают задачи в узкой предметной области (конкретной области экспертизы)на основе дедуктивных рассуждений. Такие системы часто оказываются способными найти решение задач, которые неструктурированны и плохо определены. Они справляются с отсутствием структурированности путем привлечения эвристик, т. е. правил, взятых “с потолка”, что может быть полезным в тех системах, когда недостаток необходимых знаний или времени исключает возможность проведения полного анализа.

Экспертная система состоит из базы знаний (части системы, в которой содержатся факты), подсистемы вывода (множества правил, по которым осуществляется решение задачи), подсистемы объяснения, подсистемы приобретения знаний и диалогового процессора.

[ Главное достоинство ЭС- возможность накапливать знания, сохранять их длительное время, обновлять и тем самым обеспечивать относительную независимость конкретной организации от наличия в ней квалифицированных специалистов. Накопление знаний позволяет повышать квалификацию специалистов, работающих на предприятии, используя наилучшие, проверенные решения.

Практическое применение искусственного интеллекта на машиностроительных предприятиях и в экономике основано на ЭС, позволяющих повысить качество и сохранить время принятия решений, а также способствующих росту эффективности работы и повышению квалификации специалистов.

Р ешение задачи в ЭС сопровождается понятными пользователю объяснениями, качество получаемых решений обычно не хуже, а иногда и лучше достигаемого специалистами. В системах, основанных на знаниях, правила (или эвристики), по которым решаются проблемы в конкретной предметной области, хранятся в базе знаний. Проблемы ставятся перед системой в виде совокупности фактов, описывающих некоторую ситуацию, и система с помощью базы знаний пытается вывести заключение из этих фактов.

Отличительные особенности. Экспертные системы первого и второго поколения.

  1. Экспертиза может проводиться только в одной конкретной области. Так, программа, предназначенная для определения конфигурации систем ЭВМ, не может ставить медицинские диагнозы.

  2. База знаний и механизм вывода являются различными компонентами. Действительно, часто оказывается возможным сочетать механизм вывода с другими базами знаний для создания новых ЭС.

Ограничения в применение экспертных систем..

Даже лучшие из существующих ЭС, которые эффективно функционируют с человеком-экспертом.

1. Большинство ЭС не вполне пригодны для применения конечным пользователем. Если вы не имеете некоторого опыта работы с такими системами, то у вас могут возникнуть серьезные трудности. Многие системы оказываются доступными только тем экспертам, которые создавали из базы знаний.

2. Вопросно-ответный режим, обычно принятый в таких системах, замедляет получение решений. Например, без системы MYCIN врач может (а часто и должен) принять решение значительно быстрее, чем с ее помощью.

3. Навыки системы не возрастают после сеанса экспертизы.

4. Все еще остается проблемой приведение знаний, полученных от эксперта, к виду, обеспечивающему их эффективную машинную реализацию.

5. ЭС не способны обучаться, не обладают здравым смыслом. Домашние кошки способны обучаться даже без специальной дрессировки, ребенок в состоянии легко уяснить, что он станет мокрым, если опрокинет на себя стакан с водой, однако если начать выливать кофе на клавиатуру компьютера, у него не хватит “ума” отодвинуть ее.

6. ЭС неприменимы в больших предметных областях. Их использование ограничивается предметными областями, в которых эксперт может принять решение за время от нескольких минут до нескольких часов.

7. В тех областях, где отсутствуют эксперты (например, в астрологии), применение ЭС оказывается невозможным.

8. Человек-эксперт при решении задач обычно обращается к своей интуиции или здравому смыслу, если отсутствуют формальные методы решения или аналоги таких задач.

Системы, основанные на знаниях, оказываются неэффективными при необходимости проведения скрупулезного анализа, когда число “решений” зависит от тысяч различных возможностей и многих переменных, которые изменяются во времени. В таких случаях лучше использовать базы данных с интерфейсом на естественном языке.

Преимущества ЭС перед человеком - экспертом.

Системы, основанные на знаниях, имеют определенные преимущества перед человеком-экспертом.

1. У них нет предубеждений.

2. Они не делают поспешных выводов.

3. Эти системы работают систематизировано, рассматривая все детали, часто выбирая наилучшую альтернативу из всех возможных.

4. База знаний может быть очень и очень большой. Будучи введены в машину один раз, знания сохраняются навсегда. Человек же имеет ограниченную базу знаний, и если данные долгое время не используются, то они забываются и навсегда теряются.

  1. Системы, основанные на знаниях, устойчивы к “помехам”. Эксперт пользуется побочными знаниями и легко поддается влиянию внешних факторов, которые непосредственно не связаны с решаемой задачей. ЭС, не обремененные знаниями из других областей, по своей природе менее подвержены “шумам”. Подобно другим видам компьютерных программ они не могут заменить человека в решении задач, а скорее напоминают орудия труда, которые дают ему возможность решат задачи быстрее и эффективнее.

6. Эти системы не заменяют специалиста, а являются инструментом в его руках.

Искусственные нейронные сети (ИНС) — математические модели, а также их программные или аппаратные реализации, построенные по принципу организации и функционирования биологических нейронных сетей — сетей нервных клеток живого организма. Это понятие возникло при изучении процессов, протекающих в мозге при мышлении, и при попытке смоделировать эти процессы.

ИНС представляют собой систему соединённых и взаимодействующих между собой простых процессоров (искусственных нейронов). Такие процессоры обычно довольно просты, особенно в сравнении с процессорами, используемыми в персональных компьютерах. Каждый процессор подобной сети имеет дело только с сигналами, которые он периодически получает, и сигналами, которые он периодически посылает другим процессорам. И тем не менее, будучи соединёнными в достаточно большую сеть с управляемым взаимодействием, такие локально простые процессоры вместе способны выполнять довольно сложные задачи.

С точки зрения машинного обучения, нейронная сеть представляет собой частный случай методов распознавания образов, дискриминантного анализа, методов кластеризации и т. п. С точки зрения кибернетики, нейронная сеть используется в задачах адаптивного управления и как алгоритмы для робототехники.

Нейронные сети не программируются в привычном смысле этого слова, они обучаются. Возможность обучения — одно из главных преимуществ нейронных сетей перед традиционными алгоритмами. Технически обучение заключается в нахождении коэффициентов связей между нейронами. В процессе обучения нейронная сеть способна выявлять сложные зависимости между входными данными и выходными, а также выполнять обобщение. Это значит, что, в случае успешного обучения, сеть сможет вернуть верный результат на основании данных, которые отсутствовали в обучающей выборке.

Соседние файлы в папке Теория