- •Содержание
- •Учебно-методическое обеспечение курса
- •Понятие о статистике
- •1. Абсолютные и относительные статистические величины
- •1.1. Абсолютные величины
- •1.2. Относительные величины
- •1.3. Методические указания по теме
- •1.4. Контрольные задания
- •2. Средние величины и показатели вариации
- •2.1. Понятие средней величины
- •2.2. Виды средних величин
- •2.3. Статистическое изучение вариации
- •2.4. Контрольные задания
- •3. Выборочное наблюдение
- •3.1. Понятие выборочного наблюдения
- •3.2. Способы формирования выборки
- •3.3. Средняя ошибка выборки
- •3.4. Предельная ошибка выборки
- •3.5. Необходимая численность выборки
- •3.6. Методические указания
- •3.7. Контрольные задания
- •4. Ряды динамики
- •4.1. Понятие о рядах динамики
- •4.2. Показатели изменения уровней ряда динамики
- •4.3. Средние показатели ряда динамики
- •4.4. Методы выявления основной тенденции (тренда) в рядах динамики
- •4.5. Оценка адекватности тренда и прогнозирование
- •4.6. Контрольные задания
- •5. Статистическое изучение взаимосвязей
- •5.1. Понятие корреляционной зависимости
- •5.3. Контрольные задания
- •6. Индексы
- •6.1. Индивидуальные индексы
- •6.2. Простые общие индексы
- •6.3. Агрегатные общие индексы
- •6.4. Общие индексы как средние из индивидуальных
- •6.5. Индекс структурных сдвигов
- •6.6. Факторный анализ общей и частной выручки
- •6.7. Индексы фиксированного (постоянного) и переменного состава
- •6.8. Методические указания по теме
- •6.9. Контрольные задания
- •Приложения – статистические таблицы Приложение 1. Значения интеграла Лапласа
- •Приложение 2. Значенияt-критерия Стьюдента
- •Приложение 3. ЗначенияF-критерия Фишера
4.3. Средние показатели ряда динамики
Каждый ряд динамики можно рассматривать как некую совокупность n меняющихся во времени показателей, которые можно обобщить в виде средних величин. Такие обобщенные (средние) показатели особенно необходимы при сравнении динамики изменений того или иного показателя ВЭД в разные периоды, в разных странах и т.д.
Обобщенной характеристикой ряда динамики служит прежде всего средний уровень ряда . Для разных видов рядов динамики он рассчитывается неодинаково. Ряды динамики бываютравномерные (с равными интервалами времени между уровнями), для которых средний уровень определяется по простой формуле средней величины, и неравномерные (с неравными интервалами), для которых используются формулы средних взвешенных (по интервалам времени) величин. В интервальном ряду динамики (в котором время задано в виде промежутков времени, к которым относятся уровни) определяется по формуле средней арифметической, а в моментном ряду (в котором время задано в виде конкретных моментов времени или дат, к которым относятся уровни) – по формуле средней хронологической. В табл. 14 приводятся виды рядов динамики и соответствующие формулы для расчета их среднего уровня.
Таблица 14. Виды средних величин, применяемых при расчете среднего уровня
Вид ряда динамики |
Название средней величины |
Формула средней величины |
Номер формулы |
Равномерный интервальный |
Арифметическая простая |
(2) | |
Равномерный моментный |
Хронологическая простая |
(2) | |
Неравномерный интервальный |
Арифметическая взвешенная |
(2) | |
Неравномерный моментный |
Хронологическая взвешенная |
(2) |
В нашем примере про ВО России за период 2000-2006 гг. имеем равномерный интервальный ряд динамики, поэтому его средний уровень определяем по формуле (2): = 1803,7/7 = 257,671, то есть ВО России в период 2000-2006 гг. составлял ежегодно в среднем 257,671млрд. долл. США.
Кроме среднего уровня ряда рассчитываются и другие средние показатели:
среднее абсолютное изменение (средний абсолютный прирост);
среднее относительное изменение (средний темп роста);
средний темп изменения (средний темп прироста).
Каждый из этих показателей может рассчитываться базисным и цепным способом.
Базисное среднее абсолютное изменение – это частное от деления последнего базисного абсолютного изменения на количество изменений уровней (2);цепное среднее абсолютное изменение уровней ряда – это частное от деления суммы всех цепных абсолютных изменений на количество изменений (2):
Б =(2)Ц =(2)
По знаку средних абсолютных изменений также судят о характере изменения явления в среднем: рост, спад или стабильность. Очевидно, что числители формулы (2) и (2) равны между собой по формуле (2), значит, среднее абсолютное изменение не зависит от способа расчета (базисный или цепной), так как результат получится одинаковый. В нашей задаче по формуле (2) или (2):
= 318,5/6 = 53,083, то есть ежегодно в среднем ВО растет на 53,083 млрд. долл.
Наряду со средним абсолютным изменением рассчитывается и среднее относительное. Базисное среднее относительное изменение определяется по формуле (2), ацепное среднее относительное изменение – по формуле (2):
Б==(2)Ц=(2)
Естественно, базисное и цепное среднее относительное изменения должны быть одинаковыми и сравнением их с критериальным значением 1 делается вывод о характере изменения явления в среднем: рост, спад или стабильность. В нашем примере про ВО: == 1,209, то есть ежегодно в среднем в период 2000-2006 гг. ВО России растет в 1,209 раза.
Вычитанием 100% из среднего относительного изменения образуется соответствующий среднийтемп изменения, по знаку которого также можно судить о характере изменения изучаемого явления, отраженного данным рядом динамики. В нашем примере про ВО: = 1,209 – 1 = 0,209, то есть ежегодно в среднем в период 2000-2006 гг. ВО России растет на 20,9%.