
- •Содержание
- •Г л а в а 6. Элементы и параметры электрических цепей переменного тока
- •Приложение
- •Введение
- •Электростатическое поле
- •1. Закон кулона
- •2. Напряженность электрического поля
- •3. Диэлектрическая проницаемость
- •Контрольные вопросы
- •Проводники в электрическом поле. Цепи постоянного тока. Токопроводящие материалы.
- •1. Электрический ток
- •2. Напряженность электрического поля, потенциал, напряжение и эдс
- •3. Электрическое сопротивление и проводимость
- •4. Закон ома
- •5. Законы кирхгофа
- •6. Соединение резисторов
- •7. Закон джоуля-ленца. Нагревание проводников.
- •8. Короткое замыкание и перегрузки. Тепловая защита.
- •9. Мощность
- •10. Электрические цепи с несколькими источниками энергии
- •11. Делитель напряжения
- •12. Потери напряжения и мощности в проводах
- •13. Передача электрической энергии по проводам
- •14. Токопроводящие материалы
- •Контрольные вопросы
- •Диэлектрики в электрическом поле. Изоляция электротехнических материалов. Диэлектрические материалы.
- •1. Строение диэлектрика.
- •2. Диэлектрик в электрическом поле. Поляризация диэлектрика
- •3. Электрическая емкость. Конденсаторы.
- •4. Соединение конденсаторов
- •5. Энергия электрического поля конденсатора
- •6. Электрический пробой диэлектрика
- •7. Диэлектрические материалы. Изоляция электротехнических материалов.
- •Контрольные вопросы
- •Магнитное поле. Электромагнетизм и электромагнитная индукция. Магнитные материалы.
- •1. Магнитное поле в неферромагнитной среде. Основные понятия
- •2. Напряженность и индукция магнитного поля
- •3. Магнитный поток.
- •4. Индуктивность.
- •5. Магнитные свойства веществ. Магнитная проницаемость
- •Магнитные свойства ферромагнитных материалов. Намагниченность.
- •7. Циклическое перемагничивание. Гистерезис.
- •8. Ферромагнитные материалы
- •9. Электромагнитные силы
- •10. Электромагнитная индукция
- •11. Вихревые токи
- •12. Эдс самоиндукции и взаимоиндукции
- •Контрольные вопросы
- •Линейные электрические цепи переменного тока
- •Основные определения
- •Сложение синусоидальных величин
- •Среднее значение синусоидальных величин
- •Контрольные вопросы
- •Элементы и параметры электрических цепей переменного тока
- •1. Цепь с активным сопротивлением
- •2. Электрическая цепь с индуктивностью
- •Резонанс напряжений
- •Параллельное соединение r, l, c – элементов
- •Контрольные вопросы
- •Трехфазные электрические цепи
- •Принципы построения трехфазных электрических цепей
- •Соединение звезда. Несимметричная нагрузка. Явление перекоса фаз
- •Нулевой провод
- •Мощность трехфазной системы
- •Контрольные вопросы
- •Нелинейные электрические цепи
- •Характеристики нелинейных электрических цепей и элементов
- •Электрическая цепь с нелинейным индуктивным элементом
- •Трансформаторы
- •Контрольные вопросы
- •Электрические машины переменного тока
- •Вращающееся магнитное поле
- •Устройство асинхронного двигателя
- •Принцип работы асинхронного двигателя
- •Регулирование числа оборотов асинхронного двигателя
- •Однофазные асинхронные двигатели
- •Синхронный генератор. Устройство и принцип работы
- •Синхронный двигатель. Принцип работы
- •Контрольные вопросы
- •Машины постоянного тока
- •Общие сведения
- •Устройство и работа генератора постоянного тока
- •Типы генераторов постоянного тока
- •Генератор с независимым возбуждением
- •Генератор с параллельным возбуждением
- •Генератор с последовательным возбуждением
- •Генератор со смешанным возбуждением
- •Двигатели постоянного тока
- •Контрольные вопросы
- •Переходные процессы в электрических цепях
- •Основные определения
- •2. Зарядка и разрядка конденсатора
- •3. Релаксационные колебания
- •4. Включение и выключение реальной индуктивной катушки при постоянном напряжении источника
- •5. Разрядка конденсатора на индуктивность
- •Контрольные вопросы
- •Современные способы получения электрической энергии. Виды силовых электростанций. Альтернативная электроэнергетика.
- •1. Тепловые электростанции (тэс)
- •Экологические проблемы тэс
- •2. Гидравлические электрические станции (гэс).
- •3. Гидроаккумулирующие электрические станции (гаэс)
- •4. Приливные электрические станции
- •5. Атомные электрические станции (аэс)
- •55Cs140→56Ba140→57La140→58Ge140→стабильное ядро;
- •37Rb94→38Sr94→39y94→40Zr90→ стабильное ядро.
- •Магнитогидродинамическое преобразование энергии (мгд-генераторы).
- •7. Термоэмиссионные генераторы
- •8. Солнечные электростанции
- •9. Электрохимические генераторы
- •10. Термоэлектрические генераторы
- •11. Геотермальные электростанции
- •12. Термоядерная энергетика
- •13. Водородная энергетика
- •14. Понятие о единой энергетической системе.
- •Контрольные вопросы
- •Атомно-молекулярная теория строения вещества
- •Структура и строение атома
- •Линейчатый спектр. Постулаты бора и квантование орбит
- •Корпускулярно - волновой дуализм нанообъектов. Волны де-бройля
- •Туннелирование
- •Классификация наноматериалов
- •8. Трехмерные наноматериалы
- •Размерные эффекты и свойства нанообъектов
- •Химические свойства наноматериалов
- •Тепловые свойства нанообъектов
- •Магнитные свойства нанообъектов
- •Функциональные и конструкционные углеродные наноматериалы.
- •Получение углеродных наноструктур
- •Применение и использование наноматериалов в практической деятельности
- •Контрольные вопросы
- •Приложение
- •Сложение векторов.
- •Метод комплексных чисел
- •Расчет цепей методом узлового напряжения
Типы генераторов постоянного тока
В зависимости от способа создания магнитного поля генераторы постоянного тока делятся на три группы: 1) генераторы с постоянными магнитами, или магнитоэлектрические; 2) генераторы с независимым возбуждением; 3) генераторы с самовозбуждением.
Магнитоэлектрические генераторы состоят из одного или нескольких подковообразных постоянных магнитов, в поле которых вращается якорь с обмоткой. Ввиду малой вырабатываемой мощности генераторы этого типа для промышленных целей употребляются в малой степени.
У генераторов с независимым возбуждением обмотка полюсов питается от постороннего, не связанного с генератором, источника постоянного напряжения (аккумуляторы, выпрямители и др.)
Питание обмотки возбуждения полюсов генератора с самовозбуждением осуществляется со щеток якоря самой машины. Принцип самовозбуждения заключается в следующем. При отсутствии тока в обмотке возбуждения якорь генератора вращается в слабом магнитном поле остаточного магнетизма полюсов. Незначительная эдс, индуктируемая в обмотке якоря в этот момент, посылает слабый ток в обмотку возбуждения. Магнитное поле полюсов увеличивается, отчего эдс в проводниках якоря также увеличивается, что, в свою очередь, вызывает увеличение тока возбуждения. Так будет продолжаться до тех пор, пока в обмотке возбуждения не установится ток, соответствующий величине сопротивления цепи возбуждения. Самовозбуждение машины может произойти лишь в том случае, если ток, протекающий по обмотке полюсов, будет создавать магнитное поле, усиливающее поле остаточного магнетизма, и если, кроме того, сопротивление в цепи возбуждения не превышает некоторой определенной величины.
Генераторы с самовозбуждением, в зависимости от способа соединения обмотки возбуждения с обмоткой якоря, делятся на три типа:
Генераторы с параллельным возбуждением, у которого обмотка возбуждения включена параллельно обмотке якоря.
Генератор с последовательным возбуждением, у которого обмотка возбуждения включена последовательно с обмоткой якоря.
Генератор со смешанным возбуждением, у которого на полюсах имеются две обмотки: одна, включенная параллельно обмотке якоря, и другая, включенная последовательно с обмоткой якоря.
В зависимости от способа соединения обмотки возбуждения с обмоткой якоря генератор обладает своими особенностями, своими присущими только ему свойствами.
Генератор с независимым возбуждением
Схема генератора этого типа дана на рис. а. Ток возбуждения, подаваемый от постороннего источника напряжения, не зависит от условий работы самого генератора. Реостат в цепи возбуждения позволяет менять величину тока возбуждения, что приводит к изменению магнитного потока машины, а это, в свою очередь, ведет к изменению эдс или напряжения генератора.
а б
Рис.122
Обмотка возбуждения состоит из большого числа витков медной изолированной проволоки. При постоянном числе оборотов якоря и отсутствии нагрузки генератора ( холостом ходе) эдс машины зависит только от тока возбуждения. Изменяя сопротивление цепи возбуждения, замечая показания амперметра в цепи возбуждения и вольтметра, подключенного к щеткам генератора, можно установить зависимость между эдс генератора и током возбуждения при холостом ходе (рис.122).
При первом намагничивании генератора и при отсутствии тока возбуждения (iB=0) вольтметр машины покажет нуль при любом числе оборотов якоря. Увеличение тока возбуждения будет сопровождаться вначале пропорциональным увеличением эдс генератора. Соответствующая часть характеристики холостого хода будет прямолинейна. Но дальнейшее увеличение тока возбуждения вызовет магнитное насыщение машины, отчего кривая приобретает изгиб. Если теперь уменьшать ток возбуждения, то можно заметить, что при тех же самых значениях тока возбуждения эдс генератора будет иметь большие значения, чем при намагничивании, и кривая размагничивания пройдет несколько выше, чем кривая намагничивания. Это объясняется явлением гистерезиса. При уменьшении тока возбуждения до нуля генератор за счет остаточного магнетизма будет иметь некоторую эдс.
Большое практическое значение имеет внешняя характеристика при неизменных nиIв, т.е.
Рис.123
Снятие внешней характеристики имеет целью определить изменения напряжения, происходящие в генераторе в результате изменения нагрузки.
Уменьшение напряжения на зажимах генератора с увеличением нагрузки вызывается увеличением реакции якоря и увеличением падения напряжения в сопротивлении обмотки якоря, так как
(10-1)
Напряжение на зажимах генератора можно поддерживать постоянным при изменении нагрузки путем регулирования тока возбуждения при помощи регулировочного реостата.