- •Содержание
- •Г л а в а 6. Элементы и параметры электрических цепей переменного тока
- •Приложение
- •Введение
- •Электростатическое поле
- •1. Закон кулона
- •2. Напряженность электрического поля
- •3. Диэлектрическая проницаемость
- •Контрольные вопросы
- •Проводники в электрическом поле. Цепи постоянного тока. Токопроводящие материалы.
- •1. Электрический ток
- •2. Напряженность электрического поля, потенциал, напряжение и эдс
- •3. Электрическое сопротивление и проводимость
- •4. Закон ома
- •5. Законы кирхгофа
- •6. Соединение резисторов
- •7. Закон джоуля-ленца. Нагревание проводников.
- •8. Короткое замыкание и перегрузки. Тепловая защита.
- •9. Мощность
- •10. Электрические цепи с несколькими источниками энергии
- •11. Делитель напряжения
- •12. Потери напряжения и мощности в проводах
- •13. Передача электрической энергии по проводам
- •14. Токопроводящие материалы
- •Контрольные вопросы
- •Диэлектрики в электрическом поле. Изоляция электротехнических материалов. Диэлектрические материалы.
- •1. Строение диэлектрика.
- •2. Диэлектрик в электрическом поле. Поляризация диэлектрика
- •3. Электрическая емкость. Конденсаторы.
- •4. Соединение конденсаторов
- •5. Энергия электрического поля конденсатора
- •6. Электрический пробой диэлектрика
- •7. Диэлектрические материалы. Изоляция электротехнических материалов.
- •Контрольные вопросы
- •Магнитное поле. Электромагнетизм и электромагнитная индукция. Магнитные материалы.
- •1. Магнитное поле в неферромагнитной среде. Основные понятия
- •2. Напряженность и индукция магнитного поля
- •3. Магнитный поток.
- •4. Индуктивность.
- •5. Магнитные свойства веществ. Магнитная проницаемость
- •Магнитные свойства ферромагнитных материалов. Намагниченность.
- •7. Циклическое перемагничивание. Гистерезис.
- •8. Ферромагнитные материалы
- •9. Электромагнитные силы
- •10. Электромагнитная индукция
- •11. Вихревые токи
- •12. Эдс самоиндукции и взаимоиндукции
- •Контрольные вопросы
- •Линейные электрические цепи переменного тока
- •Основные определения
- •Сложение синусоидальных величин
- •Среднее значение синусоидальных величин
- •Контрольные вопросы
- •Элементы и параметры электрических цепей переменного тока
- •1. Цепь с активным сопротивлением
- •2. Электрическая цепь с индуктивностью
- •Резонанс напряжений
- •Параллельное соединение r, l, c – элементов
- •Контрольные вопросы
- •Трехфазные электрические цепи
- •Принципы построения трехфазных электрических цепей
- •Соединение звезда. Несимметричная нагрузка. Явление перекоса фаз
- •Нулевой провод
- •Мощность трехфазной системы
- •Контрольные вопросы
- •Нелинейные электрические цепи
- •Характеристики нелинейных электрических цепей и элементов
- •Электрическая цепь с нелинейным индуктивным элементом
- •Трансформаторы
- •Контрольные вопросы
- •Электрические машины переменного тока
- •Вращающееся магнитное поле
- •Устройство асинхронного двигателя
- •Принцип работы асинхронного двигателя
- •Регулирование числа оборотов асинхронного двигателя
- •Однофазные асинхронные двигатели
- •Синхронный генератор. Устройство и принцип работы
- •Синхронный двигатель. Принцип работы
- •Контрольные вопросы
- •Машины постоянного тока
- •Общие сведения
- •Устройство и работа генератора постоянного тока
- •Типы генераторов постоянного тока
- •Генератор с независимым возбуждением
- •Генератор с параллельным возбуждением
- •Генератор с последовательным возбуждением
- •Генератор со смешанным возбуждением
- •Двигатели постоянного тока
- •Контрольные вопросы
- •Переходные процессы в электрических цепях
- •Основные определения
- •2. Зарядка и разрядка конденсатора
- •3. Релаксационные колебания
- •4. Включение и выключение реальной индуктивной катушки при постоянном напряжении источника
- •5. Разрядка конденсатора на индуктивность
- •Контрольные вопросы
- •Современные способы получения электрической энергии. Виды силовых электростанций. Альтернативная электроэнергетика.
- •1. Тепловые электростанции (тэс)
- •Экологические проблемы тэс
- •2. Гидравлические электрические станции (гэс).
- •3. Гидроаккумулирующие электрические станции (гаэс)
- •4. Приливные электрические станции
- •5. Атомные электрические станции (аэс)
- •55Cs140→56Ba140→57La140→58Ge140→стабильное ядро;
- •37Rb94→38Sr94→39y94→40Zr90→ стабильное ядро.
- •Магнитогидродинамическое преобразование энергии (мгд-генераторы).
- •7. Термоэмиссионные генераторы
- •8. Солнечные электростанции
- •9. Электрохимические генераторы
- •10. Термоэлектрические генераторы
- •11. Геотермальные электростанции
- •12. Термоядерная энергетика
- •13. Водородная энергетика
- •14. Понятие о единой энергетической системе.
- •Контрольные вопросы
- •Атомно-молекулярная теория строения вещества
- •Структура и строение атома
- •Линейчатый спектр. Постулаты бора и квантование орбит
- •Корпускулярно - волновой дуализм нанообъектов. Волны де-бройля
- •Туннелирование
- •Классификация наноматериалов
- •8. Трехмерные наноматериалы
- •Размерные эффекты и свойства нанообъектов
- •Химические свойства наноматериалов
- •Тепловые свойства нанообъектов
- •Магнитные свойства нанообъектов
- •Функциональные и конструкционные углеродные наноматериалы.
- •Получение углеродных наноструктур
- •Применение и использование наноматериалов в практической деятельности
- •Контрольные вопросы
- •Приложение
- •Сложение векторов.
- •Метод комплексных чисел
- •Расчет цепей методом узлового напряжения
10. Электромагнитная индукция
Закон электромагнитной индукции или закон Фарадея для электротехники является одним из основных. Это явление состоит в том, что в электропроводящем контуре возбуждается эдс индукции, если магнитный поток , сцепленный с этим контуром, изменяется.
На основе этого явления создаются и работают электрические генераторы и двигатели, трансформаторы, радиопередатчики и радиоприемники (телевизионные приемники ) и многие другие. Этот закон необходим при изучении электрических цепей переменного тока. Открыт закон М. Фарадеем в 1831г.
В проводнике АБ, движущемся под действием механической силы Fмхслева направо в магнитном поле В (направленном от нас за чертеж) так, что он пересекает линии магнитной индукции, возникает эдс индукции. Это связано с тем, что свободные электроны проводника АБ

Рис.48
движутся вместе с ним со скоростью V.V– относительная скорость проводника и магнитного поля (рис.48).
На каждый электрон действует сила Лоренца
=
(4-19)
которая направлена вдоль проводника
снизу вверх (согласно правила левой
руки). Под действием этой силы электроны
перемещаются к верхнему концу проводника,
где создается избыточный отрицательный
заряд, а на другом конце проводника
образуется такой же по величине
положительный заряд. Разделение зарядов
в проводнике приводит к возникновению
электрического поля, т.е. между заряженными
частями проводника возникают силы
Кулона (
),
направленные уже сверху вниз, т.е. против
силы Лоренца.
Разделение зарядов в проводнике заканчивается при равенстве электромагнитной и электрической силы, т.е. при Fл =Fк. Равенство сил означает наличие между концами проводника АБ установившейся разности потенциаловVА-VБ.
Предположим, что шины, по которым катится
проводник АБ, металлические и соединены
между собой резистором R.
Тогда образуется замкнутый контур
(цепь), в котором (ой) под действием
разности потенциалов
появится электрический токI.
=
или
(4-20)
Откуда следует, что эдс индукции равна
(4-21)
При угле α ≠ 900в эту формулу
вместо полной скорости вводится проекция
ее на направление, перпендикулярное
направлению магнитной индукции
, и тогда получается более общая формула
(4-22)
Если α = 0, т.е. при своем движении проводник не пересекает силовые линии магнитного поля , а как бы скользит вдоль силовой линии, то эдс индукции равна нулю. Если замкнуть проводник, движущийся в магнитном поле, на резистор R, то индуктированная эдс создаст в контуре токI. Этот ток, взаимодействуя с магнитным полем, вызывает появление тормозящей силыFм, противодействующей причине, вызывающей эдс, - в этом и есть проявление правила или принципа Ленца. И в формуле для эдс следует ставить знак минус
(4-23)
Проводник длиной ℓ, перемещающийся перпендикулярно силовым линиям (α=900) со скоростьюv, проходит за элементарный отрезок времениdtпутьdх. Тогда
. (4-24)
Если в магнитном поле находится катушка
с числом витков N, то
активная длина провода
где ℓср- средняя длина одного
витка.
Индуцируемая эдс в катушке
(4-25)
Из рис. видно, что
В свою очередь,BdS=dФ. Тогда
(4-26)
Последнее выражение показывает, что индуцированная эдс пропорциональна скорости изменения потока dФ/dt.
Это изменение потока может происходить как в сторону увеличения (dФ>0, магнит вводится в катушку), так и в сторону убывания потока (dФ<0, магнит вытаскивается из катушки). Поэтому направление индуцируемой эдс зависит от характера изменения потока.
Таким образом, эдс индукции в каком –либо замкнутом контуре, равна скорости изменения магнитного потока внутри контура, взятой с обратным знаком.
Выражение
показывает, что эдс индукции, не
зависит от материала, в котором она
наводится. Последнее выражение справедливо
как для проводящих сред (проводники),
так и непроводящих (диэлектрики). В
проводящей среде индуктированная эдс
вызывает появление токов проводимости,
в диэлектрике – токов смещения. Таким
образом, при изменении магнитного потока
в любой среде инициируется появление
электрических зарядов, а следовательно,
появление электрического поля.
