- •Содержание
- •Г л а в а 6. Элементы и параметры электрических цепей переменного тока
- •Приложение
- •Введение
- •Электростатическое поле
- •1. Закон кулона
- •2. Напряженность электрического поля
- •3. Диэлектрическая проницаемость
- •Контрольные вопросы
- •Проводники в электрическом поле. Цепи постоянного тока. Токопроводящие материалы.
- •1. Электрический ток
- •2. Напряженность электрического поля, потенциал, напряжение и эдс
- •3. Электрическое сопротивление и проводимость
- •4. Закон ома
- •5. Законы кирхгофа
- •6. Соединение резисторов
- •7. Закон джоуля-ленца. Нагревание проводников.
- •8. Короткое замыкание и перегрузки. Тепловая защита.
- •9. Мощность
- •10. Электрические цепи с несколькими источниками энергии
- •11. Делитель напряжения
- •12. Потери напряжения и мощности в проводах
- •13. Передача электрической энергии по проводам
- •14. Токопроводящие материалы
- •Контрольные вопросы
- •Диэлектрики в электрическом поле. Изоляция электротехнических материалов. Диэлектрические материалы.
- •1. Строение диэлектрика.
- •2. Диэлектрик в электрическом поле. Поляризация диэлектрика
- •3. Электрическая емкость. Конденсаторы.
- •4. Соединение конденсаторов
- •5. Энергия электрического поля конденсатора
- •6. Электрический пробой диэлектрика
- •7. Диэлектрические материалы. Изоляция электротехнических материалов.
- •Контрольные вопросы
- •Магнитное поле. Электромагнетизм и электромагнитная индукция. Магнитные материалы.
- •1. Магнитное поле в неферромагнитной среде. Основные понятия
- •2. Напряженность и индукция магнитного поля
- •3. Магнитный поток.
- •4. Индуктивность.
- •5. Магнитные свойства веществ. Магнитная проницаемость
- •Магнитные свойства ферромагнитных материалов. Намагниченность.
- •7. Циклическое перемагничивание. Гистерезис.
- •8. Ферромагнитные материалы
- •9. Электромагнитные силы
- •10. Электромагнитная индукция
- •11. Вихревые токи
- •12. Эдс самоиндукции и взаимоиндукции
- •Контрольные вопросы
- •Линейные электрические цепи переменного тока
- •Основные определения
- •Сложение синусоидальных величин
- •Среднее значение синусоидальных величин
- •Контрольные вопросы
- •Элементы и параметры электрических цепей переменного тока
- •1. Цепь с активным сопротивлением
- •2. Электрическая цепь с индуктивностью
- •Резонанс напряжений
- •Параллельное соединение r, l, c – элементов
- •Контрольные вопросы
- •Трехфазные электрические цепи
- •Принципы построения трехфазных электрических цепей
- •Соединение звезда. Несимметричная нагрузка. Явление перекоса фаз
- •Нулевой провод
- •Мощность трехфазной системы
- •Контрольные вопросы
- •Нелинейные электрические цепи
- •Характеристики нелинейных электрических цепей и элементов
- •Электрическая цепь с нелинейным индуктивным элементом
- •Трансформаторы
- •Контрольные вопросы
- •Электрические машины переменного тока
- •Вращающееся магнитное поле
- •Устройство асинхронного двигателя
- •Принцип работы асинхронного двигателя
- •Регулирование числа оборотов асинхронного двигателя
- •Однофазные асинхронные двигатели
- •Синхронный генератор. Устройство и принцип работы
- •Синхронный двигатель. Принцип работы
- •Контрольные вопросы
- •Машины постоянного тока
- •Общие сведения
- •Устройство и работа генератора постоянного тока
- •Типы генераторов постоянного тока
- •Генератор с независимым возбуждением
- •Генератор с параллельным возбуждением
- •Генератор с последовательным возбуждением
- •Генератор со смешанным возбуждением
- •Двигатели постоянного тока
- •Контрольные вопросы
- •Переходные процессы в электрических цепях
- •Основные определения
- •2. Зарядка и разрядка конденсатора
- •3. Релаксационные колебания
- •4. Включение и выключение реальной индуктивной катушки при постоянном напряжении источника
- •5. Разрядка конденсатора на индуктивность
- •Контрольные вопросы
- •Современные способы получения электрической энергии. Виды силовых электростанций. Альтернативная электроэнергетика.
- •1. Тепловые электростанции (тэс)
- •Экологические проблемы тэс
- •2. Гидравлические электрические станции (гэс).
- •3. Гидроаккумулирующие электрические станции (гаэс)
- •4. Приливные электрические станции
- •5. Атомные электрические станции (аэс)
- •55Cs140→56Ba140→57La140→58Ge140→стабильное ядро;
- •37Rb94→38Sr94→39y94→40Zr90→ стабильное ядро.
- •Магнитогидродинамическое преобразование энергии (мгд-генераторы).
- •7. Термоэмиссионные генераторы
- •8. Солнечные электростанции
- •9. Электрохимические генераторы
- •10. Термоэлектрические генераторы
- •11. Геотермальные электростанции
- •12. Термоядерная энергетика
- •13. Водородная энергетика
- •14. Понятие о единой энергетической системе.
- •Контрольные вопросы
- •Атомно-молекулярная теория строения вещества
- •Структура и строение атома
- •Линейчатый спектр. Постулаты бора и квантование орбит
- •Корпускулярно - волновой дуализм нанообъектов. Волны де-бройля
- •Туннелирование
- •Классификация наноматериалов
- •8. Трехмерные наноматериалы
- •Размерные эффекты и свойства нанообъектов
- •Химические свойства наноматериалов
- •Тепловые свойства нанообъектов
- •Магнитные свойства нанообъектов
- •Функциональные и конструкционные углеродные наноматериалы.
- •Получение углеродных наноструктур
- •Применение и использование наноматериалов в практической деятельности
- •Контрольные вопросы
- •Приложение
- •Сложение векторов.
- •Метод комплексных чисел
- •Расчет цепей методом узлового напряжения
Магнитные свойства ферромагнитных материалов. Намагниченность.
Ферромагнитные материалы в электротехнике имеют наиважнейшее значение.
Если в магнитное поле внести ферроманетик, то магнитная индукция в нем значительно возрастает, а сам материал намагничивается. Сущность происходящего процесса заключается в следующем. Ферромагнитное поле состоит из мелких самопроизвольно намагниченных областей, объем которых составляет около 10-8 см3 (рис.36).
Рис.36
Эти намагниченные области можно представить в виде элементарных двухполюсных диполей, которые создают свои магнитные поля, связанные между собой силами сцепления. Магнитные силы этих областей обуславливаются элементарными электрическими токами, образующимися, главным образом, в результате вращения электронов вокруг собственных осей. При отсутствии внешнего магнитного поля в ферромагнитном теле магнитные силы компенсируют друг друга, т.е. суммарное магнитное поле тела равно нулю. Под действием внешнего поля, эти элементарные магниты ориентируются по полю (поворачиваются), тем самым на одной стороне тела создается один полюс, а на другой – другой полюс. Таким образом, само тело становится поляризованным и создает свое собственное магнитное поле.
С увеличением внешнего поля количество ориентированных элементарных магнитов становится больше, что приводит к возрастанию внутреннего поля. На нижеследующем рисунке изображена кривая изменения намагниченности тела J в зависимости от изменения напряженности внешнего поля Н.
Рис.37
На рис.37а показана схема установки для намагничивания ферромагнитного сердечника. С увеличением тока в катушке пропорционально увеличивается напряженность магнитного поля I .
Если для конкретных значений величины Н измерить или подсчитать соответствующие им значения магнитной индукции В, то можно построить график первоначального намагничивания ферромагнетика, т.е. B = f(H), которая показана на рис.37б участком кривой 0-1.
На участке 0-1 с увеличением напряженности Н, увеличивается магнитная индукция В. Это объясняется тем, что магнитные моменты доменов, ранее ориентированные произвольно, принимают направление внешнего магнитного поля. Затем прирост магнитной индукции за счет внутреннего магнитного поля уменьшается, а далее полностью прекращается, т.е. наступает состояние магнитного насыщения (после точки 1) . Bs-магнитная индукция насыщения.
а б
Рис.38
Намагниченность J тела – величина, характеризующая магнитное поле ферромагнитного тела за счет его поляризации. Намагниченность имеет ту же размерность, что и напряженность магнитного поля, т.е. А/м. Намагниченность тела не может возрастать бесконечно. Если направление поля самопроизвольного намагничивания во всех точках совпадает с направлением внешнего поля , то намагниченность тела достигает своего предельного значения , называемого намагниченностью насыщения (рис.38).
Нелинейный характер кривой намагничивания показывает, что магнитная проницаемость ферромагнитных материалов непостоянна и зависит от напряженности магнитного поля.
При заданной напряженности Н внешнего магнитного поля в неферромагнитной среде магнитная индукция
(4-8)
В ферромагнитной среде к этой индукции внешнего поля(В0) прибавляется индукция добавочного магнитного поля J . С учетом этого результирующая магнитная индукция
(4-9)
С другой стороны, эта магнитная индукция связана с напряженностью магнитного поля соотношением
(4-10)
Откуда следует, что
. (4-11)
Рис.39
На рис.39 произведено суммирование кривых магнитной индукции внешнего поля (μ0 Н) и магнитной индукции внутреннего поля тела (μ0 J). Складывая ординаты функций μ0 Н и μ0 J получаем новую функцию, которую называют кривой намагничивания.
Кривая намагничивания может быть разбита на три характерных участка:
Участок Оа, на котором магнитная индукция возрастает почти пропорционально напряженности поля;
Участок аб, на котором рост магнитной индукции замедляется;
Участок за точкой б , где наблюдается слабое нарастание индукции.
Каждый ферромагнитный материал имеет свою кривую намагничивания.
Нелинейный характер кривой намагничивания показывает, что магнитная проницаемость ферромагнитных материалов непостоянна и зависит от напряженности магнитного поля.
Подобный же характер зависимости от Н имеет магнитная проницаемость, начальным значением которой при Н=0 является μ0 и которая в конечной стадии своего изменения асимптотически стремится к тому же μ0. Примерный график зависимости μ от Н представлен на рис. б.