- •Белки и их биологическая роль
 - •Характеристика простых белков
 - •Методы разделения (фракционирования) белков
 - •Характеристика сложных белков
 - •Хромопротеины
 - •Липид-белковые комплексы
 - •Нуклеопротеины
 - •Состав нк:
 - •Углевод-белковые комплексы
 - •Хондроитинсульфаты (хс). Это полимеры, структурной единицей которых является димер, состоящий из глюкуроновой кислоты и n-ацетилгалактозамина (сульфатирован по 4 или 6 положению).
 - •Фосфопротеины
 - •Ферменты
 - •Строение коферментов
 - •Изоферменты
 - •Свойства ферментов
 - •Классификация и номенклатура ферментов
 - •Номенклатура ферментов
 - •Современные представления о ферментативном катализе
 - •Молекулярные эффекты действия ферментов
 - •Теория кислотно-основного катализа
 - •Регуляция активности ферментов
 - •Обмен веществ
 - •Обмен белков Переваривание и всасывание белков
 - •Превращение белков в органах пищеварения
 - •Переваривание сложных белков и их катаболизм
 - •Гниение белков и обезвреживание его продуктов
 - •Метаболизм аминокислот
 - •Общие пути обмена веществ
 - •Образование конечных азотистых продуктов
 - •Временное обезвреживание аммиака
 - •Орнитиновый цикл мочевинообразования
 - •Синтез и распад нуклеотидов
 - •А. Окисление пуриновых нуклеозидов
 - •I. Превращение пвк
 - •II. Цикл Кребса:
 - •Функции цтк:
 - •III. Биологическое окисление.
 - •Дыхательная цепь (дц) (или Цепь Переноса Электронов – цпэ, или Электрон-Транспортная Цепь – этц)
 - •Функционирование дц
 - •Окислительное фосфорилирование
 - •Альтернативные варианты биологического окисления
 - •Репликация (самоудвоение, биосинтез) днк
 - •Транскрипция (передача информации с днк на рнк) или биосинтез рнк
 - •Трансляция (биосинтез белка)
 - •Адресование белков
 - •Регуляция биосинтеза белка
 - •Обмен углеводов
 - •Простагландины, простациклины, тромбоксаны и лейкотриены
 - •Переваривание липидов
 - •Механизм ресинтеза жира
 - •Транспортные формы липидов в организме
 - •Превращение липидов в тканях
 - •Биосинтез глицерина и вжк в тканях
 - •Биосинтез холестерина (хс)
 - •Патология липидного обмена
 - •Классификация гормонов
 - •Механизм действия гормонов
 - •Гормоны центральных желез - гипоталамуса и гипофиза
 - •Гормоны щитовидной железы
 - •Гормоны паращитовидных желез
 - •Гормоны поджелудочной железы (пж)
 - •Гормоны половых желез
 - •Классификация витаминов
 - •Роль витаминов в обмене веществ
 - •Понятие о гиповитаминозах, авитаминозах и гипервитаминозах
 - •Причины гиповитаминозов
 - •Жирорастворимые витамины Витамин а
 - •Витамин d
 - •Витамин е
 - •Роль витамина е в обмене веществ
 - •Витамин к
 - •Роль витамина к в обмене веществ
 - •Водорастворимые витамины Витамин с
 - •Роль витамина с в обмене веществ
 - •Витамин р
 - •Витамин в1
 - •Витамин в2
 - •Витамин рр
 - •Витамин в6
 - •Витамин в9, в10, вс (фолиевая кислота)
 - •Витамин в12
 - •Витамин в3
 - •Витамин н (биотин)
 - •Витаминоподобные вещества Парааминобензойная кислота
 - •Гидроксилирование ксенобиотиков с участием микросомальной монооксигеназной системы
 - •Роль печени в пигментном обмене
 - •Биосинтез гема
 - •Распад гема
 - •Патология пигментного обмена
 - •Биохимия крови Типы изменения биохимического состава крови
 - •Белковый состав крови Функции белков крови:
 - •Общий белок
 - •Альбумины
 - •Глобулины в норме 20-30 г/л
 - •Небелковые азотсодержащие вещества Остаточный азот
 - •Углеводный обмен
 - •Липидный обмен
 - •Минеральный обмен
 - •Ферменты плазмы крови
 - •Физические свойства мочи здорового человека, их изменения при патологии
 - •Показатели химического состава мочи
 - •Особенности обмена веществ в нервной ткани
 - •Химическая передача нервного возбуждения
 - •Тропомиозин
 
Нуклеопротеины
Нуклеопротеины – это сложные белки, содержащие в качестве небольшой части нуклеиновые кислоты (до 65%).
НП состоят из 2-х частей: белковой (содержит гистоны и протамины, которые являясь основными белками, придают основные свойства) и простетической, представленной НК, сообщающими кислотные свойства. Взаимодействие между этими частями по ион-ионному механизму.
Все НП по составу НК можно разделить на 2 группы: рибонуклеопротеины (РНП) и дезоксирибонуклеопротеины (ДНП).
Состав нк:
НК – высокомолекулярные органические вещества, полинуклеотиды. Мономерами являются мононуклеотиды. Каждый мононуклеотид состоит из: углевода, азотистого основания и фосфорной кислоты. Так, РНК содержит -D-рибофуранозу (рибозу), одно из 4-х возможных азотистых оснований (А, Г, Ц или У) и остаток фосфорной кислоты. ДНК содержит -D-дезоксирибофуранозу (дезоксирибозу), одно из 4-х возможных азотистых оснований (А, Г, Ц или Т) и остаток фосфорной кислоты.
	
	 
	
Строение азотистых оснований:
К группе пуриновых относятся аденин (6-аминопурин) и гуанин (2-амино-6-оксипурин). К группе пиримидиновых – урацил (2,4-диоксипиримидин), тимин (5-метилурацил) и цитозин (2-окси-4-аминопиримидин).
	             
	
	     
	
	     
	
Схема образования нуклеотидов: [рис. схемы: аденин присоединяет рибозу и фосфорную к-ту, при этом выделяются 2 молекулы воды и образуется АМФ]. В клетке имеются нуклеотидфосфаты, дезоксинуклеотидфосфаты, трифосфаты (АТФ).
Структура нуклеиновых кислот:
Имеют несколько уровней структурной организации.
1. первичная структура. РНК и ДНК построены однотипно – представлены полинуклеотидной цепью, состоящей из отдельных мононуклеотодов, соединённых между собой 3’→5’-фосфодиэфирными связями. Эта связь образуется между фосфорным остатком одного мононуклеотида и 3’-ОН-группой пентозного остатка другого мононуклеотида. [рис. образования такой связи] Разные НК отличаются числом, порядком чередования и составом НК.
2. вторичная структура. По рентгеноструктурному анализу ДНК в 1953г Уотсон и Крик предложили модель строения ДНК, которая объясняла самовоспроизведение организмов, наследственную изменчивость. Вторичная структура представляет собой двойную спираль, состоящую из 2 полинуклеотидных цепей, закрученных вокруг одной общей оси. Эти цепи антипараллельны, т.е. одна идет в направлении 5’→3’, а другая 3’→5’. Пуриновому основанию одной цепи соответствует пиримидиновое основание другой цепи – эти основания комплиментарны друг другу, т.е. дополняют одно другое до целого. Между А и Т две водородные связи (А=Т), а между Г и Ц – 3 (ГЦ).
Молекула спирализована на всем протяжении, гидрофобные участки внутри спирали, их плоскости перпендикулярны основаниям и параллельны друг другу. В вертикальном направлении возникают гидрофобные взаимодействия. Вторичная структура стабилизируется водородными связями и гидрофобными взаимодействиями.
Вторичная структура РНК более простая, представляет собой одну полинуклеотидную цепь, в которой спирализованы лишь некоторые участки. Вторичная структура РНК представлена в виде клеверного листа. Для тРНК известна третичная структура в форме буквы Г. [рис. РНК в виде клеверного листа]
Биологическая роль НК:
ДНК – основная часть её локализуется в ядре в виде ДНП в составе хроматина или хромосом делящихся клеток. Главная роль – хранение генетической информации, участие в процессе транскрипции в качестве матрицы для построения молекулы РНК.
Все РНК по функции делятся на:
- рРНК (рибосомальные), составляют до 80% в составе рибосом. Играют роль каркаса для объединения рибосом белков;
- мРНК (иРНК) – образуется в ядре (ядрышке). Переносит информацию из ядра в цитоплазму, является матрицей в процессе трансляции белка. последний кодон иРНК соответствует последней АК в белке;
- тРНК по своей форме напоминает форму клеверного листа и представляет собой полинуклеотидную цепь, которая составляет 3 петли и отдельные участки могут быть спирализованы. тРНК активирует аминокислоты и транспортирует их к месту биосинтеза белков, также участвует в трансляции. Имеет антикодоновый триплет – место, с помощью которого тРНК связывается с комплиментарным кодоном мРНК.
