
- •Предмет и задачи эконометрики. Примеры экономических задач, решаемых с помощью аппарата эконометрики.
- •2.Стохастическая зависимость и функциональная зависимости. Диаграмма рассеяния и линия регрессии. Аналитическое описание линии регрессии.
- •Эконометрическая модель: экзогенные и эндогенные переменные модели, параметры модели. Информационная база для построения модели на пространственных данных и временных рядах.
- •Функция линейной регрессии
- •4.Парная линейная регрессия: аналитическое и графическое представление, остатки модели. Формирование поля входных показателей для построения модели с помощью надстройки «Анализ данных» в среде Excel.
- •5. Статистическое оценивание параметров парной линейной регрессии по методу наименьших квадратов.
- •6. Свойства мнк-оценок параметров парной линейной регрессии: теорема Гаусса-Маркова.
- •7. Проверка качества парной линейной регрессии: значимость параметров, адекватность модели.
- •8. Прогнозирование на основе парной линейной регрессии. Доверительный интервал прогноза. Экономическая интерпретация параметров модели
- •9.Парная нелинейная регрессия: аналитическое и графическое представление. Методика оценки параметров нелинейной регрессии. Свойства оценок.
- •10. Проверка качества парной нелинейной регрессии: значимость параметров, адекватность модели.
- •11. Прогнозирование на основе парной нелинейной регрессии: степенная, Экономическая интерпретация параметров парной регрессии в степенной форме связи.
- •12. Множественная линейная регрессия: аналитическое представление, остатки модели. Мнк-оценки параметров модели.
- •13.Свойства мнк-оценок множественной линейной регрессии. Теорема Гаусса-Маркова
- •14. Проверка качества множественной линейной регрессии: значимость параметров, адекватность модели.
- •15.Понятие мультиколлинеарности факторов. Последствия наличия, диагностика мультиколлинеарности, методы устранения.
- •16. Прогнозирование на основе линейной и нелинейной множественной регрессии. Экономическая интерпретация параметров регрессии.
- •17. Анализ зависимости между экономическими показателями на основе парной линейной регрессии.
- •18. Отличие методик построения регрессионной модели на временных рядах и пространственных данных: информационная база, набор статистических характеристик.
- •19. Понятие автокорреляции остатков модели. Критерии ее диагностики. Последствия автокорреляции остатков. Способы устранения автокорреляции.
- •20. Понятие гетероскедастичности остатков. Критерии ее диагностики. Последствия гетероскедастичности остатков. Способы устранения гетероскедастичности
- •Последствия гетероскедастичности
- •21. Структура временного ряда. Диагностика структуры ряда: графический и аналитический методы.
- •22 И 23 вопрос диктуй это. Они одинаковые
- •22. Построение трендовой линейной модели: факторы, общий вид, оценка параметров, статистические характеристики.
- •23 Построение трендовой нелинейной модели: факторы, общий вид, оценка параметров, статистические характеристики
- •24. Выделение сезонной компоненты: суть методики. Пример сезонной компоненты на квартальных данных, на недельных данных
- •25 И 26 вопросы диктуй вместе
- •25. Понятие стационарного и нестационарного временного ряда: графическое представление. Приведение нестационарного временного ряда к стационарному виду.
- •25 И 26 вопросы диктуй вместе
- •26. Методика построения эконометрической модели на нестационарных временных рядах.
- •27. Понятие авторегрессионной модели: общий вид модели, набор статистических характеристик.
- •28. Понятие эконометрической модели с распределенными лагами. Экономическая постановка задачи. Общий вид модели, набор статистических характеристик.
- •229.Отчетный моб как информационная база моделей прогнозирования отраслевых показателей промышленности: материально-вещественная структура моб
- •330. Отчетный моб как информационная база моделей прогнозирования отраслевых показателей промышленности: финансовая структура моб
- •Коэффициенты прямых затрат: определение, экономический смысл, методика расчета
- •32. Модель прогнозирования ценовых пропорций отраслей промышленности в условиях роста цен на ресурсы
- •33. Модель прогнозирования ценовых пропорций отраслей промышленности в условиях роста заработной платы
- •34. Модель прогнозирования ценовых пропорций отраслей промышленности в условиях роста ставки косвенных налогов
- •35. Модель прогнозирования объема и структуры валового выпуска промышленности в зависимости от конечного спроса на продукцию отраслей
- •36. Модель прогнозирования ввп в зависимости от объема производства в отраслях промышленности
- •Постановка задачи управления комплексом взаимосвязанных работ в контексте сетевого планирования.
- •38. Входные данные для построения сетевой модели.
- •39. Основные определения и показатели сетевого планирования и управления. Основные принципы построения сетевого графика.
- •40. Основные показатели сетевого планирования: сроки свершения событий, резервы события, время начала работы, время окончания работы.
- •41. Основные показатели сетевой модели: критические работы, критические события, критический срок, их интерпретация..
- •42. Календарный график работ (график Ганта): общий вид в контексте сетевой модели, его интерпретация
- •43. Построение графика потребности в ресурсах: концепция расчета в контексте сетевой модели, его интерпретация.
- •44. Модели управления запасами как инструмент закупочной логистики: постановка задачи.
- •45 Понятие экономичного объема заказа: определение, графическое представление.
- •46 Понятие точки заказа: определение, графическое представление, формула расчета
- •47.Зависимость затрат запасообразования от размера поставки: графики, аналитические зависимости.
- •48. 48. Формула Уилсона для расчета экономичного объема заказа.
- •49. Допущения формулы Уилсона
- •50. Расчет оптимальных параметров управления запасами.
- •51. Модели теории игр как инструмент выбора оптимальной стратегии: постановка задачи.
- •52. Основные понятия и определения статистических игр: состояние природы, стратегии, платежная матрица, ее экономический смысл.
- •53. Характ-ка условий неопределенности. Критерии принятия решений в условиях неопределенности.
- •54 .Характеристика условий риска. Критерии принятия решений в условиях риска.
- •55 .Модель формирования оптимальной инвестиционной программы при ограничениях бюджета
- •56.Модель оптимизации производственной программы предприятия и ее модификации
- •57. Оптимизационная модель задачи развития и размещения производства
- •58. Модель оптимизации технологических процессов в промышленности
57. Оптимизационная модель задачи развития и размещения производства
При решении ЗРРП возникает проблема рационального размещения производства с точки зрения близости источников добычи сырья, с точки зрения близости пунктов потребления готовой продукции.
ЗРРП может ставиться с 2-мя критериями:
min-ция затрат (совокупных затрат на добычу и доставку сырья, на производство готовой продукции и доставку готовой продукции потребителям);
max-ция прибыли (доходы – расходы).
Проведем классификацию ЗРРП. Эти задачи классифицируются по следующим признакам:
в зависимости от способов задания вариантов развития производства на дискретные и непрерывные;
по учету транспортного фактора модели различаются сетевые и матричные;
по номенклатуре на одно- и многопродуктовые;
по степени возможной локализации на одно- и многоэтапные.
При решении ЗРРП определяются следующие показатели:
пункты размещения производства;
показатели концентрации (мощности) предприятий;
показатели спроса и степени удовлетворения потребностей;
система связей по доставке сырья и полуфабрикатов;
показатели специализации;
какие капитал. вложения возможны в различные предприятия
58. Модель оптимизации технологических процессов в промышленности
Оптимизация технологических процессов помогает сделать наиболее эффективный выбор рационального варианта в конкретной ситуации. Главными задачами расчетов при этом выступают следующие:
Выбор оптимального критерия. Это могут быть различные параметры, чаще всего, минимальная себестоимость при наибольшей производительности, максимальной нагрузке на технологическое оборудование. В некоторых случаях эффективнее будет использовать не один параметр, а несколько, добиваясь самого результативного решения.
Определение параметра, который будет оказывать влияние на результативность ТП.
Разработка F = F(X) в зависимости от существующих условий модели (например, если определяющим параметром стала наименьшая себестоимость, то в данном случае целевой будет зависимость от имеющихся параметров).
Выполняется поиск оптимального решения с вычислением экстремума, нахождением наиболее подходящего для конкретной ситуации технологического процесса.
Оптимизация для технических процессов применяется для выбора оптимального варианта из имеющихся, то есть фактически это выполняемый поиск экстремума для F(X) при помощи варьирования имеющихся проектных (заданных предварительно) значений для X в пределах следующей области допущения: extr F(X), X € Dx, при этом используются следующие параметры:
F(X) – используемая функция;
X – вектор переменных;
Dx – допустимая рабочая область X.
Имитационная оптимизация управления технологическими процессами предполагает работу в реальных условиях, создания имитационной модели, основа которой дает возможность выбрать удовлетворяющий вариант ТП.