
- •Предмет и задачи эконометрики. Примеры экономических задач, решаемых с помощью аппарата эконометрики.
- •Стохастическая зависимость и функциональная зависимости. Диаграмма рассеяния и линия регрессии. Аналитическое описание линии регрессии.
- •Эконометрическая модель: экзогенные и эндогенные переменные модели, параметры модели. Информационная база для построения модели на пространственных данных и временных рядах.
- •Функция линейной регрессии
- •Статистическое оценивание параметров парной линейной регрессии по методу наименьших квадратов: суть метода
- •Свойства мнк-оценок параметров парной линейной регрессии: теорема Гаусса-Маркова.
- •Проверка качества парной линейной регрессии: значимость параметров, адекватность модели.
- •8. Прогнозирование на основе парной линейной регрессии. Доверительный интервал прогноза. Экономическая интерпретация параметров модели.
- •10. Проверка качества парной нелинейной регрессии: значимость параметров, адекватность модели.
- •11. Прогнозирование на основе парной нелинейной регрессии (степенная функция). Экономическая интерпретация параметров парной регрессии в степенной форме связи.
- •13. Свойства мнк-оценок множественной линейной регрессии: теорема Гаусса-Маркова.
- •14. Проверка качества множественной линейной регрессии: значимость параметров, адекватность модели.
- •15. Понятие мультиколлинеарности факторов. Последствия наличия, диагностика мультиколлинеарности, методы устранения.
- •16. Прогнозирование на основе линейной и нелинейной (степенной) множественной регрессии. Экономическая интерпретация параметров регрессии.
- •17. Анализ зависимости между экономическими показателями на основе парной линейной регрессии.
- •18. Отличие методик построения регрессионной модели на временных рядах и пространственных данных: информационная база, набор статистических характеристик.
- •19. Понятие автокорреляции остатков модели. Критерии ее диагностики. Последствия автокорреляции остатков. Способы устранения автокорреляции.
- •20. Понятие гетероскедастичности остатков. Критерии ее диагностики. Последствия гетероскедастичности остатков. Способы устранения гетероскедастичности
- •Последствия гетероскедастичности
- •21. Структура временного ряда. Диагностика структуры ряда: графическое представление элементов структуры.
- •22. Построение трендовой линейной модели: факторы, общий вид, оценка параметров, статистические характеристики
- •23. Построение трендовой нелинейной модели: факторы, общий вид, оценка параметров, статистические характеристики
- •24. Выделение сезонной компоненты: суть методики. Пример сезонной компоненты на квартальных данных, на недельных данных
- •25. Понятие стационарного и нестационарного временного ряда: графическое представление. Приведение нестационарного временного ряда к стационарному виду.
- •26. Методика построения регрессионной модели на нестационарных временных рядах.
- •29. Отчетный моб как информацион. База моделей прогнозир-я отраслевых показ-лей промышленности: материально-вещественная структура моб.
- •30. Отчетный моб как информационная база моделей прогнозирования отраслевых показателей промышленности: финансовая структура моб
- •31. Коэффициенты прямых затрат: определение, эк. Смысл, методика расчета
- •32. Модель прогнозирования ценовых пропорций отраслей промышленности в условиях роста цен на ресурсы.
- •33. Модель прогнозирования ценовых пропорций отраслей промышленности в условиях роста заработной платы
- •34. Модель прогнозирования ценовых пропорций отраслей промышленности в условиях роста ставки косвенных налогов
- •40. Осн. Показатели сетевого планирования: сроки свершения событий, резервы события, время начала работы, время окончания работы.
- •41. Основные показатели сетевой модели: критические работы, критические события, критический срок, их интерпретация.
- •42. Календарный график работ (график Ганта): общий вид в контексте сетевой модели, его интерпретация.
- •43. Построение графика потребности в ресурсах: концепция расчета в контексте сетевой модели, его интерпретация.
- •44. Модели управления запасами как инструмент закупочной логистики: постановка задачи.
- •Расчет оптимальных параметров управления запасами
- •Модели теории игр как инструмент выбора оптимальной стратегии: постановка задачи.
- •Основные понятия и определения статистических игр: состояние природы, стратегии, платежная матрица, ее экономический смысл.
- •Характеристика условий неопределенности. Критерии принятия решений в условиях неопределенности.
- •Характеристика условий риска. Критерии принятия решений в условиях риска.
- •Модель формирования оптимальной инвестиционной программы при ограничениях бюджета.
- •Модель оптимизации производственной программы предприятия и ее модификации
- •Оптимизационная модель задачи развития и размещения производства
- •Модель оптимизации технологических процессов в промышленности
Свойства мнк-оценок параметров парной линейной регрессии: теорема Гаусса-Маркова.
Метод наименьших квадратов (МНК) - метод оценивания параметров линейной регрессии, минимизирующий сумму квадратов отклонений наблюдений зависимой переменной от искомой линейной функции.
Теорема Гаусса-Маркова: для того, чтобы полученные оценки были несмещенными и состоятельными выполняется:
1.
,
Мат.ожидание=0
2.Дисперсия
остатков
постоянна
(гомоскедастичность остатков)
3.Остатки
некоррелированы между собой
4.Остатки имеют норм.закон распределения
5.Факторы некоррелированы
Проверка качества парной линейной регрессии: значимость параметров, адекватность модели.
Коэффициент
детерминации
принимает значения от 0 до 1 и в случае
качественной
модели
линейной регрессии стремится к единице.
Чем ближе
к единице, тем больше уравнение регрессии
объясняет поведение У.
Оценка значимости уравнения регрессии в целом производится на основе - критерия Фишера, которому предшествует дисперсионный анализ. Фактическое значение F-критерия Фишера сравнивается с табличным значением Fкр (α, m , n-2). При этом, если F>Fкр, то признается статистическая значимость уравнения в целом. Минимальное возможное значение F-статистики - 0. Чем выше значение статистики Фишера, тем качественнее модель линейной регрессии.
Для оценки статистической значимости коэффициентов регрессии и корреляции рассчитываются t-критерий Стьюдента. Если t>tкр, то коэффициенты статистически значимы.
Чтобы иметь общее суждение о качестве модели из относительных отклонений по каждому наблюдению, определяют среднюю ошибку аппроксимации. Средняя ошибка аппроксимации - среднее отклонение расчетных значений от фактических. Допустимый предел значений средней ошибки аппроксимации не более 8-10%.
8. Прогнозирование на основе парной линейной регрессии. Доверительный интервал прогноза. Экономическая интерпретация параметров модели.
С помощью средней ошибки аппроксимации должно быть оценено качество уравнения. Только при условии его высокого качества модель может быть использована для прогнозных расчетов, так как лишь в этом случае можно надеяться на получение точного и надежного прогноза.
Прогнозирование – построение оценки зависимой переменной для таких значений независимых переменных, которых нет в исходных наблюдениях.
Различают 2 прогнозирования:
Точечный прогноз - это число, значение зависимой переменной, вычисляемое для заданных значений независимых переменных.
Интервальный прогноз - это доверительный интервал, в котором с заданной вероятностью находится истинное значение зависимой переменной для заданных значений независимых переменных.
Коэффициент парной линейной регрессии b показывает, как в среднем изменяется зависимый экономический показатель у с изменением независимого фактора х на единицу.
Коэффициент а парной линейной регрессии экономич. смысла не имеет.
9. Парная нелинейная регрессия: аналитическое и графическое представление. Методика оценки параметров нелинейной регрессии. Формирование поля входных показателей для построения модели с помощью надстройки «Анализ данных» в среде Excel.
При построении нелинейной регрессии применяются:
-степенная
функция
-показательная
-параболическая
-гипербола
Уравнение нелинейной регрессии
Чтобы найти «a» и «b» для этих форм связи нужно привести к линейному виду.
В степенной форме связи «b» имеет четкую эк. интерпретацию – коэффициент эластичности. Он характеризует, на сколько процентов изменится в среднем значение фактора у при изменении фактора х на 1%.