
- •Предмет и задачи эконометрики. Примеры экономических задач, решаемых с помощью аппарата эконометрики.
- •Стохастическая зависимость и функциональная зависимости. Диаграмма рассеяния и линия регрессии. Аналитическое описание линии регрессии.
- •Эконометрическая модель: экзогенные и эндогенные переменные модели, параметры модели. Информационная база для построения модели на пространственных данных и временных рядах.
- •Функция линейной регрессии
- •Статистическое оценивание параметров парной линейной регрессии по методу наименьших квадратов: суть метода
- •Свойства мнк-оценок параметров парной линейной регрессии: теорема Гаусса-Маркова.
- •Проверка качества парной линейной регрессии: значимость параметров, адекватность модели.
- •8. Прогнозирование на основе парной линейной регрессии. Доверительный интервал прогноза. Экономическая интерпретация параметров модели.
- •10. Проверка качества парной нелинейной регрессии: значимость параметров, адекватность модели.
- •11. Прогнозирование на основе парной нелинейной регрессии (степенная функция). Экономическая интерпретация параметров парной регрессии в степенной форме связи.
- •13. Свойства мнк-оценок множественной линейной регрессии: теорема Гаусса-Маркова.
- •14. Проверка качества множественной линейной регрессии: значимость параметров, адекватность модели.
- •15. Понятие мультиколлинеарности факторов. Последствия наличия, диагностика мультиколлинеарности, методы устранения.
- •16. Прогнозирование на основе линейной и нелинейной (степенной) множественной регрессии. Экономическая интерпретация параметров регрессии.
- •17. Анализ зависимости между экономическими показателями на основе парной линейной регрессии.
- •18. Отличие методик построения регрессионной модели на временных рядах и пространственных данных: информационная база, набор статистических характеристик.
- •19. Понятие автокорреляции остатков модели. Критерии ее диагностики. Последствия автокорреляции остатков. Способы устранения автокорреляции.
- •20. Понятие гетероскедастичности остатков. Критерии ее диагностики. Последствия гетероскедастичности остатков. Способы устранения гетероскедастичности
- •Последствия гетероскедастичности
- •21. Структура временного ряда. Диагностика структуры ряда: графическое представление элементов структуры.
- •22. Построение трендовой линейной модели: факторы, общий вид, оценка параметров, статистические характеристики
- •23. Построение трендовой нелинейной модели: факторы, общий вид, оценка параметров, статистические характеристики
- •24. Выделение сезонной компоненты: суть методики. Пример сезонной компоненты на квартальных данных, на недельных данных
- •25. Понятие стационарного и нестационарного временного ряда: графическое представление. Приведение нестационарного временного ряда к стационарному виду.
- •26. Методика построения регрессионной модели на нестационарных временных рядах.
- •29. Отчетный моб как информацион. База моделей прогнозир-я отраслевых показ-лей промышленности: материально-вещественная структура моб.
- •30. Отчетный моб как информационная база моделей прогнозирования отраслевых показателей промышленности: финансовая структура моб
- •31. Коэффициенты прямых затрат: определение, эк. Смысл, методика расчета
- •32. Модель прогнозирования ценовых пропорций отраслей промышленности в условиях роста цен на ресурсы.
- •33. Модель прогнозирования ценовых пропорций отраслей промышленности в условиях роста заработной платы
- •34. Модель прогнозирования ценовых пропорций отраслей промышленности в условиях роста ставки косвенных налогов
- •40. Осн. Показатели сетевого планирования: сроки свершения событий, резервы события, время начала работы, время окончания работы.
- •41. Основные показатели сетевой модели: критические работы, критические события, критический срок, их интерпретация.
- •42. Календарный график работ (график Ганта): общий вид в контексте сетевой модели, его интерпретация.
- •43. Построение графика потребности в ресурсах: концепция расчета в контексте сетевой модели, его интерпретация.
- •44. Модели управления запасами как инструмент закупочной логистики: постановка задачи.
- •Расчет оптимальных параметров управления запасами
- •Модели теории игр как инструмент выбора оптимальной стратегии: постановка задачи.
- •Основные понятия и определения статистических игр: состояние природы, стратегии, платежная матрица, ее экономический смысл.
- •Характеристика условий неопределенности. Критерии принятия решений в условиях неопределенности.
- •Характеристика условий риска. Критерии принятия решений в условиях риска.
- •Модель формирования оптимальной инвестиционной программы при ограничениях бюджета.
- •Модель оптимизации производственной программы предприятия и ее модификации
- •Оптимизационная модель задачи развития и размещения производства
- •Модель оптимизации технологических процессов в промышленности
Предмет и задачи эконометрики. Примеры экономических задач, решаемых с помощью аппарата эконометрики.
Экономико-математическое моделирование – это комплекс математических, экономических и научных дисциплин, предметом исследования которых являются количественные закономерности процессов, рассматриваемых в неразрывной связи с их качественными характеристиками.
Основные задачи эконометрики:
1. Построение эконометрических моделей, т.е. представление экономических моделей в математической форме, удобной для проведения эмпирического анализа.
2. Оценка параметров построенной модели
3. Проверка качества найденных параметров модели и самой модели в целом.
4. Использование построенных моделей для объяснения поведения исследуемых экономических показателей, прогнозирования и предсказания, а также для осмысленного проведения экономической политики.
Типовые экономические модели, изучаемые с помощью эконометрических методов:
производственные функции, выражающие взаимосвязи между затратами и результатами производственной деятельности;
модели функционирования национальной экономики;
целевые функции потребительского предпочтения и функции спроса;
модели рынка и экономического равновесия и др.
Стохастическая зависимость и функциональная зависимости. Диаграмма рассеяния и линия регрессии. Аналитическое описание линии регрессии.
Сущ. 2 вида зависимостей между явлениями:
При функциональной зависимости каждому значению независимой переменной х однозначно соответствует вполне определенное значение зависимой переменной у. Эту зависимость можно описать в виде равенства у = f(x) .
Стохастическая зависимость, то есть для независимой переменной x можно указать ряд значений зависимой у. Например, нет строгой зависимости между доходом и потреблением, ценой и спросом и т. д. Данная зависимость проявляется только в массовых явлениях. Это связано с тем, что зависимая переменная, кроме выделенной переменной х, подвержена влиянию также других неконтролируемых или неучтенных факторов.
При анализе зависимости между 2 переменными применяют диаграмму рассеяния, которая является наглядной формой представления инф. Для ее построения используют прямоугольную систему координат, где по оси абсцисс отмечают значения независимой переменно, а по оси ординат – значения зависимой переменной. Результат каждого наблюдения отображается точкой на плоскости. Скопление этих точек определяет картину зависимости 2 переменных. Диаграмма рассеяния – форма систематизации материала. По ширине разброса точек и можно сделать вывод о степени тесноты связи, если точки расположены близко друг к другу – наличие тесной связи.
Линия, которая аппроксимирует (приближает) такую стохастическую зависимость – линия регрессии
Функция
линейной регрессии
Параметр
в
модели парной регрессии – это среднее
значение зависимой переменной
при
условии, что независимая переменная
равна
нулю.
Параметр
в
модели парной регрессии – это коэффициент
модели регрессии. Значение
параметра характеризует, насколько
в среднем изменится зависимая
переменная
при
изменении
факторной переменной
на
единицу своего измерения.