Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
19
Добавлен:
02.07.2023
Размер:
4.27 Mб
Скачать

2) Неферментативные системы антирадикальной защиты и их физиологическое значение.

АО вещ-ва, образующие менее активные радикалы и «гасят» цепные реакции (витамины А, Е, С, GSH; Адреналин, мочевина, билирубин, природные полифенолы, красители).

простым примером некаталитического разрушения радикалов является их гидролиз, лежащий в основе нейтрализации многих водорастворимых продуктов, например, ацилгалидов, эпоксидов, карбокатионов, изоцианатов, эписульфониум-иона и т.д.

Наиболее важной неферментативной реакцией "обезвреживания" радикалов является их взаимодействие с биологическими антиоксидантами, такими как витамин Е, глутатион, витамин С. В результате такого взаимодействия образуются нереакционноспособные вещества, прерывание каскад "наработки" свободных радикалов. 3) Роль нейраминидазы и гемаглютининов в вирусной репликации.

Гемагглютинин прикрепляется к полисахаридным цепочкам на поверхности эритроцитов, содержащим остатки сиаловой кислоты. Нейраминидаза специфически отщепляет остаток сиаловой к-ты от полисахаридов мембраны эритроцита, разрушая рецепторы к вирусу на клетках организма-хозяина. Далее вирус проникает в клетку.

Билет 34

1. Распад гликогена в печени и мышцах. Регуляция.

Гликоген печени расщепляется при снижении концентрации глюкозы в крови, прежде всего при кратком голодании между приемами пищи. Через 12-18 часов голодания запасы гликогена в печени полностью истощаются. Также распад гликогена в печени происходит при мышечной нагрузке под влиянием адреналина и, если развивается рабочая гипогликемия, глюкагона. \\\ В мышцах количество гликогена снижается обычно только во время физической нагрузки – длительной и/или напряженной. Гликоген здесь используется для обеспечения глюкозой самих миоцитов.

Мобилизация (распад) гликогена или гликогенолиз активируется при недостатке свободной глюкозы в клетке, а значит и в крови (голодание, мышечная работа). При этом уровень глюкозы крови "целенаправленно" поддерживает только печень, в которой имеется глюкозо-6-фосфатаза, гидролизующая фосфатный эфир глюкозы. Образуемая в гепатоците свободная глюкоза выходит через плазматическую мембрану в кровь.

В гликогенолизе непосредственно участвуют три фермента:

  1. Фосфорилаза гликогена (кофермент пиридоксальфосфат) – расщепляет α-1,4-гликозидные связи с образованием глюкозо-1-фосфата. Фермент работает до тех пор, пока до точки ветвления (α1,6-связи) не останется 4 остатка глюкозы.

2. α(1,4)-α(1,4)-Глюкантрансфераза – фермент, переносящий фрагмент из трех остатков глюкозы на другую цепь с образованием новой α1,4-гликозидной связи. При этом на прежнем месте остается один остаток глюкозы и "открытая" доступная α1,6-гликозидная связь.

3. Амило-α1,6-глюкозидаза, ("деветвящий" фермент) – гидролизует α1,6-гликозидную связь с высвобождением свободной (нефосфорилированной) глюкозы. В результате образуется цепь без ветвлений, вновь служащая субстратом для фосфорилазы.

2. Действие первичных и вторичных продуктов перекисного окисления на мембраны и другие структуры.

Первичными продуктами ПОЛ являются гидроперекиси жирных кислот, они подвергаются дальнейшему распаду с образованием вторичных продуктов ПОЛ – различных спиртов, кетонов, альдегидов и диальдегидов, эпоксидов и других соединений.

Вторичные продукты ПОЛ является малоновый диальдегид (МДА), который способен образовывать ковалентные связи с NH2-группами белков и иных молекул с образованием шиффовых оснований.

Малоновый диальдегид (МДА), образующийся при перекисном окислении липидов, способен реагировать с ε-NH2-группами лизина или N-концевыми аминокислотами белков, с NH2-группами фосфолипидов и гликозаминов. МДА формирует мостики внутри молекул и между ними с образованием шиффовых оснований.

В конечном результате после окислительной атаки в белках появляются поперечные сшивки внутри одной молекулы, между разными белками, между белками и фосфолипидами. Из-за этого активность ферментативных белков изменяется, возможности структурных и сократительных белков падают, каналообразующие белки мембраны деформируются и проницаемость мембран возрастает, жизнеспособность и функционирование клетки уменьшаются.

Соседние файлы в папке Экзамен Биохимия