Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1 курс / Гистология / 1 практка.docx
Скачиваний:
65
Добавлен:
02.07.2023
Размер:
5.52 Mб
Скачать

1. Общий принцип организации эукариотической клетки.

Эукариотическая клетка вобрала в себя 2 основных компонента-цитоплазму и ядро. Также в эукариотической клетке есть плазмолемма(оболочка) и органеллы (рибосомы,митохондрии,аппарат Гольджи,ЭПС,лизосомы)

2. Общий принцип строения клеточной оболочки-плазмолеммы.

Плазмолемма-самая толстая из клеточных мембран(7.5-11нм). Она имеет трехслойную структуру. По краям два электронно-плотных слоя,а в центре светлый слой.

3. Строение биологической мембраны. Жидкостно-мозаичная модель мембраны.

Молекулярное строение плазмолеммы описывается жидкостно-мозаичной моделью,согласно которой она состоит липидного биослоя,в который погружены и с которым связанны молекулы белков.

Липидный бислой состоит преимущественно из молекул фосфатидихолина и фосфатидиэтаноламина,состоящими из полярной (гидрофильной) головки и неполярного(гидрофобного) хвоста. В состав многих мембран входит также холестерин. В мембране гидрофильные головки обращены наружу,а гидрофобные хвосты внутрь биослоя. Липидный состав каждой из половин биослоя неидентичен.

Мембранные белки составляют более половины массы мембраны. Их разделяют на периферические белки (вне липидного слоя) и интегральные белки(полностью или частично погружены в липидный биослой)

4. Свойства мембраны,обусловленные наличием липидного биослоя.

Основные физико-химические свойства мембран обеспечивают липиды,а конкретно они обеспечивают текучесть мембран при температуре тела. Гликолипиды связаны с олигосахаридными цепями,которые в свою очередь выступают за пределы наружной области плазмолеммы,что дает асимметричность.

5. 6.

7. 8. 9. Эндоцитоз  его разновидности.

Эндоцитоз. Транспорт макромолекул в клетку осуществляется с помощью механизма эндоцитоза (от греч. endo —внутрь и cytos —клетка). Материал, находящийся во внеклеточном пространстве, захватывается в области впячивания (инвагинации) плазмолеммы, края которого смыкаются с формированием эндоцитозного пузырька или эндо—сомы — мелкого сферического образования, герметически окруженного мембраной (рис. 3—3 и 3—5). Далее содержимое эндосомы подвергается внутриклеточной переработке (процессингу). В частности, в эндосоме в условиях закисления среды происходит отделение лиганда от рецептора (последний в дальнейшем используется повторно) — см. ниже. Разновидностями эндоцитоза служат пиноцитоз и фагоцитоз. Рис. 3—3. ПИНОЦИТОЗ (1) И фагоцитоз (2). ПС — пиносомы, ОФ — объект фагоцитоза, ПП — псевдоподии, ФС — фагосома. Пиноцитоз (от греч. pinein — пить и cytos — клетка) — захват и поглощение клеткой жидкости и (или) растворимых веществ; подразделяется на макропиноцитоз (диаметр эндосом 0.2-0.3 мкм) и микропиноцитоз (диаметр эндосом — 70-100нм). Фагоцитоз (от греч. phagein — поедать и cytos — клетка) — захват и поглощение клеткой плотных, обычно крупных (размером более 1 мкм) частиц; обычно сопровождается образованием выпячиваний цитоплазмы — псевдоподий, охватывающих объект фагоцитоза и смыкающихся над ним. Рецепторно-опосредованный эндоцитоз. Эффективность эндоцитоза существенно увеличивается, если он опосредован мембранными рецепторами, которые связываются с молекулами поглощаемого вещества или молекулами, находящимися на поверхности фагоцитируемого объекта — лигандами (от лат. ligare — связывать). В дальнейшем (после поглощения вещества) комплекс рецептор-лиганд расщепляется, и рецепторы могут вновь возвратиться в плазмолемму. Примером рецепторно-опосредованного взаимодействия может служить фагоцитоз лейкоцитом бактерии. Поскольку на плазмолемме лейкоцита имеются рецепторы к иммуноглобулинам (антителам), скорость фагоцитоза резко возрастает, если поверхность бактерии покрыта антителами опсонинами — от греч. opson — приправа). 10. Окаймленные пузырьки и ямки. Рецепторы макромолекул в плазмолемме, перемещаясь латерально по клеточной поверхности, могут, связывая свои лиганды, накапливаться в области формирующихся эндоцитозных ямок. Очень часто вокруг таких ямок и образующихся из них пузырьков со стороны цитоплазмы собирается сетевидная оболочка из белка клатрина, которая на срезах имеет вид щетинистой каемки. В покрытых клатриновой оболочкой (окаймленных) ямках рецепторные белки мембраны вытесняют все остальные; таким образом ямки действуют как приспособления для накопления и сортировки молекул. Этим механизмом достигается и значительная экономия в ходе процесса эндоцитоза: для поглощения определенного количества молекул лиганда требуется значительно меньше пузырьков, чем было бы в случае диффузного распределения комплексов рецептор-лиганд.

Окаймленная ямка достигает своего максимального размера (около 0. 3 мкм) в течение 1 мин и превращается в окаймленный пузырек. Его содержимое может подвергаться процессингу лишь после того, как через несколько секунд он утратит клатриновую оболочку. Если она сохраняется, пузырек не способен сливаться с другими структурами (ана-логичными пузырьками, лизосомами), и его содержимое остается неизмененным. Окаймленные эндоцитозные пузырьки транспортируют иммуноглобулины, белки желточных включений (в цитоплазму овоцитов), факторы роста, липопротеины низкой плотности (ЛНП). Некоторые транспортные мембранные пузырьки в цитоплазме окружены неклатриновой белковой оболочкой.

11. Экзоцитоз (от греч. ехо - наружу и cytos - клетка) - процесс, обратный эндоцитозу, при котором мембранные экзоцитозные пузырьки приближаются к плазмолемме и сливаются с ней своей мембраной, которая встраивается в плазмолемму. При этом содержимое пузырьков (продукты собственного синтеза клетки или транспортируемые ею молекулы, непереваренные и вредные вещества и др.) выделяется во внеклеточное пространство

Судьба выделяемых экзоцитозом синтезированных клеткой молекул неодинакова: (1) прикрепляясь к клеточной поверхности, они могут становиться периферическими белками (например, антигенами); (2) они могут войти в состав межклеточного вещества (например, коллаген и гликозаминогликаны; (3) попадая во внеклеточную жидкость, они могут выполнять роль сигнальных молекул (гормоны, цитокины).

Трансцитоз (от лат. trans - сквозь, через и греч. cytos - клетка) процесс, характерный для некоторых типов клеток, объединяющий признаки эндоцитоза и экзоцитоза. На одной поверхности клетки формируется эндоцитозный пузырек, который переносится к противоположной поверхности клетки и, становясь экзоцитозным пузырьком, выделяет свое содержимое во внеклеточное пространство. Процессы трансцитоза протекают очень активно в цитоплазме плоских клеток, выстилающих сосуды (эндотелиоцитах), особенно в капиллярах. В этих клетках пузырьки, сливаясь, могут образовывать временные трансцеллюлярные каналы, через которые транспортируются водорастворимые молекулы.

12.

Мембранные рецепторы являются преимущественно гликопротеинами, которые расположены на поверхности плазмолеммы клеток и обладают способностью высокоспецифически связываться со своими лигандами. Они выполняют ряд функций:

(1)регулируют проницаемость плазмолеммы, изменяя конформацию белков и ионных каналов; (2)регулируют поступление некоторых молекул в клетку; (3)действуют как датчики, превращая внеклеточные сигналы во внутриклеточные; (4)связывают молекулы внеклеточного матрикса с цитоскелетом, эти рецепторы, называемые интегринами, играют важную роль в формировании контактов между клетками и клеткой и компонентами межклеточного вещества.

Рецепторы, связанные с каналами, взаимодействуют с сигнальной молекулой (нейромедиатора), которая временно открывает или закрывает воротный механизм, в результате чего инициируется или блокируется транспорт ионов через канал.

Каталитические рецепторы включают внеклеточную часть (собственно рецептор) и цитоплазматическую часть, которая функционирует как протеинкиназа (посредством таких рецепторов на клетки воз-действуют инсулин и некоторые факторы роста).

Рецепторы, связанные с G-белками - трансмембранные белки, ассоциированные с ионным каналом или ферментом, - состоят из рецептора, взаимодействующего с сигнальной молекулой (первый посредник), и G-белка (гуанозин трифосфат-связывающего регуляторного белка), включающего несколько компонентов), который передает сигнал на связанный с мембраной фермент (аденилат циклазу) или ионный канал, вследствие чего активируется второй внутриклеточный посредник - чаще всего циклический АМФ (цАМФ) или Са2+. Около 80% всех гормонов и нейромедиаторов действуют через рецепторы, связанные с эффекторными механизмами посредством G-белков.

В составе плазмолеммы находятся интегрины, называемые клеточными адгезионными молекулами (KAM) - трансмембранные белки, служащие рецепторами для внеклеточных фибриллярных макромолекул фибронектина и ламинина. Фибронектин связывается с клетками И молекулами внеклеточного матрикса (коллагеном, гепарином, фибрином). Таким образом, фибронектин играет роль адгезионного мостика между клеткой и компонентами межклеточного вещества. Между тем, внутриклеточная часть молекулы интегрина через ряд других белков (талин, винкулин и α-актинин) связана с цитоскелетом.

13.

Межклеточные соединения подразделяются на два основных вида:

1.Механические соединения - обусловливают механическую связь зпителиоцитов друг с другом. В их число входят плотные соединения, промежуточные соединения, десмосомы, интердигитации; 2.Коммуникационные соединения - (от лат. communicatio - сообщение) обеспечивают химическую (метаболическую, ионную и электрическую) связь между эпителиоцитами. К ним относятся щелевые соединения.

(1) Плотное соединение (zonula occludens - поясок замыкания) -наиболее тесный контакт клеток из всех известных в природе. Представляет собой область частичного слияния наружных листков плазмолемм двух соседних клеток, которая блокирует распространение веществ по межклеточному пространству (обеспечивая тем самым барьерную функцию эпителия и регулируемость транспорта веществ через эпителиальный пласт). Это соединение также препятствует свободному перемещению и смешиванию функционально различных внутримембранных белков, локализующихся в плазмолемме апикальной и базолатеральной поверхностей клетки, что способствует поддержанию ее полярности.

Плотное соединение имеет вид пояска шириной 0.1-0.5 мкм, окружающего клетку по периметру (обычно у ее апикального полюса) и состоящего из анастомозирующих тяжей внутримембранных частиц. Эти частицы образованы белком окклюдином, каждая из них представляет собой область точечного слияния плазмолемм двух соседних клеток. Проницаемость плотных соединений тем ниже, чем выше число тяжей таких частиц. Для поддержания целостности этих соединений необходимы двухвалентные катионы (Са2+, Mg2+). Они метут динамично перестраиваться (вследствие изменений экспрессии и степени полимеризации окклюдина) и временно размыкаться (например, при миграции лейкоцитов через межклеточные пространства).

14.

Щелевое соединение (nexus) образовано совокупностью трубчатых трансмембранных структур диаметром 9-11 нм (коннексонов), пронизывающих плазмолеммы соседних клеток на участках диаметром 0.5-3 мкм и стыкующихся друг с другом в области узкой межклеточной щели шириной 2-3 нм. Число коннексонов в щелевом соединении обычно исчисляется сотнями. Каждый коннексон представлен 6 (иногда 4 или 5) субъединицами, образованными белком коннексином, и пронизан каналом диаметром 1.5-2.0 нм, который обусловливает свободный обмен низкомолекулярными (с массой до 2 кД) соединениями (неорганическими ионами, сахарами, витаминами, аминокислотами, нуклеотидами, АТФ и др.) между клетками, обеспечивая их ионное и метаболическое сопряжение.

15. Компоненты цитоплазмы.

Цитоплазма отделена от внешней (для данной клетки) среды внешней клеточной мембраной (плазмолеммой) и содержит органеллы и включения (рис. 3—1), погруженные в гиалоплазму (клеточный матрикс).

Органеллы — постоянно присутствующие в цитоплазме структуры, специализированные на выполнении определенных функций в клетке. Они подразделяются на органеллы общего значения и специальные органеллы.

Органеллы общего значения имеются во всех клетках и необходимы для обеспечения их жизнедеятельности. К ним относятся митохондрии, рибосомы, эндоплазматическая сеть (ЭПС), комплекс Гольджи, лизосомы, пероксисомы, клеточный центр, компоненты цитоскелета;

(2) специальные органеллы имеются лишь в некоторых клетках и обеспечивают выполнение их специализированных функций. К ним относят реснички, жгутики, микроворсинки, миофибриллы, акросому (спермиев). Специальные органеллы образуются в ходе развития клетки как производные органелл общего значения.

В состав многих органелл входит элементарная биологическая мембрана, поэтому органеллы подразделяют также на мембранные и немембранные. К мембранным органеллам относятся митохондрии, ЭПС, комплекс Гольджи, лизосомы, пероксисомы, к немембранным — рибосомы, клеточный центр, реснички, микроворсинки, жгутики, компоненты цитоскелета.

Функциональные системы (аппараты) клетки — комплексы органелл, которые под контролем ядра обеспечивают выполнение важнейших функций клетки. Выделяют: (1) синтетический аппарат; (2) энергетический аппарат; (3) аппарат внутриклеточного переваривания (эндосомально-лизосомальный); (4) цитоскелет.

Включения — временные компоненты цитоплазмы, образованные в результате накопления продуктов метаболизма клеток. Подразделяются на несколько типов.

16. Понятие о гиалоплазме.

Гиалоплазма (клеточный сок, цитозоль, клеточный матрикс) — внутренняя среда клетки, на которую приходится до 55% ее общего объема. Она представляет собой сложную прозрачную коллоидную систему, в которой взвешены органеллы и включения, и содержит различные биополимеры: белки, полисахариды, нуклеиновые кислоты, а также ионы. Претерпевает превращения по типу гельзоль. В гиалоплазме происходит большая часть реакций межуточного обмена.

17. Строение и значение гранулярной ЭПС.

Гранулярная ЭПС обеспечивает (1) биосинтез всех мембранных белков и белков, предназначенных для экспорта из клетки, и (2) начальное гликозилирование и посттрансляционные изменения белковых молекул.

Гранулярная ЭПС образована уплощенными мембранными цистернами и трубочками, на наружной поверхности которых располагаются рибосомы и полисомы, придающие мембранам зернистый (гранулярный) вид (см. рис. 3—7 и 3—8), что и отражено в названии органеллы. Мембраны грЭПС содержат особые белки, которые обеспечивают (1) связывание рибосом и (2) уплощение цистерн. Полость грЭПС содержит рыхлый материал умеренной плотности (продукты синтеза) и сообщается с перинуклеарным пространством (см. ниже). Благодаря грЭПС происходит отделение (сегрегация) вновь синтезированных белковых молекул от гиалоплазмы.

Синтез белка на грЭПС начинается на свободных полисомах, которые в дальнейшем связываются с мембранами ЭПС. На первом этапе взаимодействия иРНК с рибосомами происходит образование особого сигнального пептида (длиной 20-25 аминокислот), связывающегося с рибонуклеопротеидным комплексом — сигнал—распознающею частицей (СРЧ). Присоединение СРЧ к сигнальному пептиду угнетает дальнейший синтез белка до тех пор, пока комплекс СРЧ- полисома не свяжется со специфическим рецептором на мембране ЭПС — причальным белком. После связывания с рецептором СРЧ отделяется от полисом, что разблокирует синтез белковой молекулы.

В мембране грЭПС имеются интегральные рецепторные белки рибофорины, обеспечивающие прикрепление больших субъединиц рибосом. Эти белки не диффундируют в область аЭПС и формируют гидрофобные каналы в мембране, служащие для проникновения вновь синтезированной белковой цепочки в просвет грЭПС, что, наряду с рибофоринами, способствует удержанию рибосом на поверхности мембран грЭПС.

В просвете грЭПС сигнальный пептид отщепляется особым ферментом сигнальной пептидазой, которая располагается на внутренней поверхности мембраны. В ходе продолжающейся трансляции внутри цистерны грЭПС накапливается белок, который приобретает вторичную и третичную структуру, а также подвергается начальным посттрансляционным изменениям — гидроксилированию, сульфатированию и фосфорилированию. Наиболее важным из этих изменений является гликозилирование — присоединение к белкам олигосахаридов с образованием гликопротеинов, которое происходит перед секрецией или транспортом большинства белков к другим участкам внутри клетки (комплексу Гольджи, лизосомам или плазмолемме). В отличие от них, растворимые белки гиалоплазмы не гликозилированы. Гликозилирование обеспечивается связанным с мембраной ферментом гликозилтрансферазой, переносящим олигосахарид.

Хотя грЭПС присутствует во всех клетках (за исключением спермиев), степень ее развития существенно варьирует.Она особенно хорошо развита в клетках, специализирующихся на белковом синтезе, например, в эпителиальных железистых клетках ацинусов поджелудочной железы (вырабатывающих пищеварительные ферменты), фибробластах (синтезирующих коллаген и ряд других белков), плазматических клетках (продуцирующих иммуноглобулины). Для вех этих клеток характерна выраженная базофилия цитоплазмы в области расположения элементов грЭПС. В нейронах отдельным компактным скоплениям цистерн грЭПС на светооптическом уровне соответствуют очерченные участки базофилии цитоплазмы, которые в совокупности называются хроматофильной субстанцией или тельцами Ниссля.

Соседние файлы в папке Гистология