Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Физика. Теоретические курсы / Ландсберг Г.С. Элементарный учебник физики / Ландсберг Г.С. Элементарный учебник физики. Том 3

.pdf
Скачиваний:
79
Добавлен:
25.06.2023
Размер:
7.03 Mб
Скачать

Гл. XIX. Дисперсия света и цвета тел

391

ты обнаружили, что такой выделенный пучок, преломляясь во второй призме, уже не растягивается в полоску. Такому пучку соответствует определенный показатель преломления, значение которого зависит от цвета выделенного пучка.

Рис. 310. Опыт Ньютона — разложение солнечного света. По рисунку академика Крафта, хранящемуся в кунсткамере Академии наук (XVIII век)

§ 161. Истолкование наблюдений Ньютона. Описанные опыты показывают, что для узкого цветного пучка, выделенного из спектра, показатель преломления имеет вполне определенное значение, тогда как преломление белого света можно только приблизительно охарактеризовать одним каким-то значением этого показателя. Сопоставляя подобные наблюдения, Ньютон сделал вывод, что существуют п р о с т ы е цвета, не разлагающиеся при прохождении через призму, и с л о ж н ы е, представляющие совокупность простых, имеющих разные показатели преломления. В частности, солнечный свет есть такая совокупность цветов, которая при помощи призмы разлагается, давая спектральное изображение щели.

Таким образом, в основных опытах Ньютона заключались два важных открытия: 1) свет различного цвета характеризуется разными показателями преломления в данном веществе (дисперсия) 1); 2) белый цвет есть совокупность простых цветов.

1) Дисперсия — лат. dispersus — рассеянный, разбросанный. Наблюдавшееся Ньютоном явление следует точнее называть дисперсией показателя

392

Гл. XIX. Дисперсия света и цвета тел

Мы знаем в настоящее время, что разным цветам соответствуют различные длины световых волн. Поэтому первое открытие Ньютона можно сформулировать таким образом: показатель преломления вещества зависит от длины световой волны. Обычно он увеличивается по мере уменьшения длины волны.

Первое открытие Ньютона сохраняется в неизменной формулировке и до настоящего времени. Что же касается второго утверждения, то надо отметить значительную сложность вопроса о природе белого света. Эта проблема выходит за рамки излагаемого в этой книге материала.

Впрочем, для очень большого числа практических вопросов мы можем заменить белый свет совокупностью соответствующим образом подобранных простых (монохроматических) цветов, т. е. рассматривать белый свет как смесь этих цветов.

Открытие явления разложения белого света на цвета при преломлении позволило объяснить образование радуги и других подобных метеорологических явлений. Преломление света в водяных капельках или ледяных кристалликах, плавающих в атмосфере, сопровождается благодаря дисперсии в воде или льде разложением солнечного света. Рассчитывая направление преломления лучей в случае сферических водяных капель, мы получаем картину распределения цветных дуг, точно соответствующую наблюдаемым в радуге. Аналогично, рассмотрение преломления света в кристалликах льда позволяет объяснить явления кругов вокруг Солнца и Луны в морозное время года, образование так называемых ложных солнц, столбов и т. д.

§ 162. Дисперсия показателя преломления различных материалов. Измерения показателя преломления в зависимости от длины волны для разных веществ показывают, что дисперсия различных материалов может быть весьма различна. В табл. 9 приведены в качестве примера значения показателя преломления

взависимости от длины волны для двух сортов стекла и двух различных жидкостей.

На рис. 311 изображено, как выглядел бы спектр солнечного света, полученный при помощи призм одинаковой формы, сделанных из перечисленных в таблице материалов.

Различие в дисперсии для разных стекол позволяет исправлять хроматическую аберрацию, как об этом упоминалось

в§ 106.

преломления, ибо и другие оптические величины обнаруживают зависимость от длины волны (дисперсию).

Гл. XIX. Дисперсия света и цвета тел

393

Т а б л и ц а 9. Зависимость показателя преломления от длины волны для разных веществ

Длина волны λ в нм

Показатель преломления

 

 

 

 

 

стекло, тяже-

стекло,

серо-

вода

 

(цвет)

лый флинт

легкий крон

углерод

 

 

 

 

 

 

 

 

 

656,3

(красный)

1,6444

1,5145

1,6219

1,3311

589,3

(желтый)

1,6499

1,5170

1,6308

1,3330

486,1

(голубой)

1,6657

1,5230

1,6799

1,3371

404,7

(фиолетовый)

1,6852

1,5318

1,6990

1,3428

 

 

 

 

 

 

Рис. 311. Сравнительная дисперсия разных веществ: 1 — вода, 2 — легкий крон, 3 — тяжелый флинт. О темных линиях в спектре см. в § 178

§ 163. Дополнительные цвета. Как было сказано в § 160, основной опыт Ньютона состоял в р а з л о ж е н и и белого света в спектр. Естественно ожидать, что если мы с м е ш а е м все цвета полученного спектра, то вновь получится белый свет. Соответствующие опыты также были осуществлены Ньютоном. Смешение спектральных цветов можно осуществить, например, следующим образом. Направим на призму P (рис. 312) параллельный пучок белого света. На выходной грани призмы поместим диафрагму D и за призмой расположим линзу L. В главной фокальной плоскости M N линзы, где сходятся параллельные пучки различных цветов, получим цветную полоску крф (спектр), ибо лучи разных цветов падают на линзу под разными углами и, следовательно, собираются в разных точках фокальной плоскости. Но эти же цветные пучки лучей, проходящие через диафрагму D по разным направлениям, дадут благодаря линзе L изображение диафрагмы D в виде белого кружка в плоскости AB; в каждой точке изображения смешаны все лучи, которые входили в состав пучка белого света, упавшего на призму.

394

Гл. XIX. Дисперсия света и цвета тел

Рис. 312. Схематическое изображение опыта по смешению цветов. Рисунок имеет цветной дубликат (см. форзац)

Поместим теперь в плоскость M N , где получено резкое изображение спектра, какую-нибудь непрозрачную полоску (например, карандаш) так, чтобы она задержала какой-нибудь участок спектра, например зеленый (рис. 313). Тогда изображение окажется цветным и притом красным. Переместим карандаш так, чтобы он задерживал другие лучи спектра, например синие; изображение станет желтым. Перемещая карандаш параллельно самому себе вдоль M N , т. е. последовательно закрывая доступ то одним, то другим лучам, мы заставим изменяться окраску изображения, ибо при каждом положении карандаша в образовании изображения участвуют н е в с е ц в е т а л у ч е й белого света, а лишь часть их.

Рис. 313. Карандаш O задерживает часть спектра (зеленую). Рисунок имеет цветной дубликат (см. форзац)

Еще нагляднее становится подобный опыт, если отклонить часть лучей спектра в сторону, поместив на их пути зеркальце или призмочку (рис. 314).

В таком случае на экране AB мы получим два изображения, расположенных р я д о м друг с другом. Одно образовано отклоненными лучами, другое — всеми остальными лучами спектра.

Гл. XIX. Дисперсия света и цвета тел

395

Рис. 314. Призмочка P отклоняет часть спектра (зеленую). Рисунок имеет цветной дубликат (см. форзац)

Оба изображения окажутся цветными. Если угол отклонения подобран так, что цветные изображения отчасти перекрывают друг друга, то общая часть изображения будет освещена всеми лучами спектра и будет б е л о й.

Таким образом, общая картина будет подобна изображенной на рис. 315. Части A и B, покрытые простой штриховкой, окрашены в разные цвета, а часть C — белая. Цвета участков A к B носят название дополнительных, ибо они дополняют друг друга до белого цвета.

Рис. 315. Картины перекрытия изображений в дополнительных цветах, полученные по методу, схематически представленному на рис. 314.

Рисунок имеет цветной дубликат (см. форзац)

396

Гл. XIX. Дисперсия света и цвета тел

Варьируя описанные опыты, можно подобрать весьма большое количество сочетаний дополнительных цветов. Некоторые из них приведены в табл. 10.

Т а б л и ц а 10. Дополнительные цвета

Выделенная

красная

оранжевая

желтая

желто-

зеленая

голубо-

вато-

часть спектра

 

 

 

зеленая

 

зеленая

 

 

 

 

 

 

 

 

 

 

 

 

 

Цвет смеси

голубо-

 

 

фиоле-

пурпур-

 

оставшихся

вато-

голубой

синий

красный

лучей

зеленый

 

 

товый

ный

 

 

 

 

 

 

 

 

 

 

 

 

 

Дополнительные цвета можно получать и при помощи соответственным образом подобранных цветных стекол. Если стекла выбраны удачно, то, получив с их помощью два цветных изображения, частично накладывающихся друг на друга, мы можем получить картину, подобную изображенной на рис. 315. Два дополнительных цвета в совокупности могут и не представлять собой в с е г о спектра. Так, например, узкий участок красного цвета довольно удачно дополняет соответствующий участок зеленого. Однако наиболее совершенными дополнительными цветами являются цвета, полученные разделением спектра белого света на две части.

§ 164. Спектральный состав света различных источников.

Опытами Ньютона было установлено, что солнечный свет имеет сложный характер. Подобным же образом, т. е. анализируя состав света при помощи призмы, можно убедиться, что свет большинства других источников (лампа накаливания, дуговой фонарь и т. д.) имеет такой же характер. Сравнивая спектры этих светящихся тел, обнаружим, что соответственные участки спектров обладают различной яркостью, т. е. в различных спектрах энергия распределена по-разному. Еще надежнее удостовериться в этом можно, если исследовать спектры при помощи термоэлемента (см. § 149).

Для обычных источников эти различия в спектре не очень значительны, однако их можно без труда обнаружить. Наш глаз даже без помощи спектрального аппарата обнаруживает различия в качестве белого света, даваемого этими источниками. Так, свет свечи кажется желтоватым или даже красноватым по сравнению с лампой накаливания, а эта последняя заметно желтее, чем солнечный свет.

Еще значительнее различия, если источником света вместо раскаленного тела служит трубка, наполненная газом, светя-

Гл. XIX. Дисперсия света и цвета тел

397

щимся под действием электрического разряда. Такие трубки употребляются в настоящее время для светящихся надписей или освещения улиц. Некоторые из этих газоразрядных ламп дают ярко желтый (натриевые лампы) или красный (неоновые лампы) свет, другие светятся беловатым светом (ртутные), ясно отличным по оттенку от солнечного. Спектральные исследования света подобных источников показывают, что в их спектре имеются только о т д е л ь н ы е более или менее узкие цветные участки.

В настоящее время научились изготовлять газоразрядные лампы, свет которых имеет спектральный состав, очень близкий к солнечному. Такие лампы получили название ламп дневного света (см. § 186).

Если исследовать свет солнца или дугового фонаря, п р о- ф и л ь т р о в а н н ы й через цветное стекло, то он окажется заметно отличным от первоначального. Глаз оценит этот свет как цветной, а спектральное разложение обнаружит, что в спектре его отсутствуют или очень слабы более или менее значительные участки спектра источника.

§ 165. Свет и цвета тел. Опыты, описанные в § 164, показывают, что свет, вызывающий в нашем глазу ощущение того или иного цвета, обладает более или менее сложным спектральным составом. При этом оказывается, что глаз наш представляет собой довольно несовершенный аппарат для а н а л и з а света, так что лучи разнообразного спектрального состава могут иногда производить почти одинаковое цветовое впечатление. Тем не менее именно при помощи глаза мы получаем знание о всем многообразии цветов в окружающем мире.

Случаи, когда свет от источника направляется н е п о с р е д- с т в е н н о в глаз наблюдателя, сравнительно редки. Гораздо чаще свет предварительно проходит через тела, преломляясь и частично поглощаясь в них, либо в более или менее полной степени отражаясь от их поверхности.

Таким образом, спектральный состав света, дошедшего до нашего глаза, может оказаться значительно и з м е н е н н ы м благодаря описанным выше процессам отражения, поглощения

ит. д. В громадном большинстве случаев все подобные процессы ведут только к ослаблению тех или иных спектральных участков

имогут даже полностью устранить некоторые из таких участков, но не добавляют к свету, пришедшему от источника, излучения тех длин волн, которых в нем не было. Однако и такие процессы могут иметь место (например, в явлениях флюоресценции).

398

Гл. XIX. Дисперсия света и цвета тел

§166. Коэффициенты поглощения, отражения и пропускания. Цвет различных предметов, освещенных одним и тем же источником света (например, Солнцем), бывает весьма разнообразен, несмотря на то, что все эти предметы освещены светом одного состава. Основную роль в таких эффектах играют явления отражения и пропускания света. Как уже было выяснено, световой поток, падающий на тело, частично отражается (рассеивается), частично пропускается и частично поглощается телом. Доля светового потока, участвующего в каждом из этих процессов, определяется с помощью соответствующих коэффициентов: отражения ρ, пропускания τ и поглощения α (см. § 76).

Каждый из указанных коэффициентов (α, ρ, τ ) может зависеть от длины волны (цвета), благодаря чему и возникают разнообразные эффекты при освещении тел. Нетрудно видеть, что какое-либо тело, у которого, например, для красного света коэффициент пропускания велик, а коэффициент отражения мал, а для зеленого, наоборот, будет казаться красным в проходящем свете и зеленым в отраженном. Такими свойствами обладает, например, хлорофилл — зеленое вещество, содержащееся в листьях растений и обусловливающее зеленый цвет их. Раствор (вытяжка) хлорофилла в спирту оказывается на просвет красным, а на отражении — зеленым.

Тела, у которых для всех лучей поглощение велико, а отражение и пропускание очень малы, будут черными непрозрачными телами (например, сажа). Для очень белого непрозрачного тела (окись магния) коэффициент ρ близок к единице для всех длин волн, а коэффициенты α и τ очень малы. Вполне прозрачное стекло имеет малые коэффициенты отражения ρ и поглощения α и коэффициент пропускания τ , близкий к единице для всех длин волн; наоборот, у окрашенного стекла для некоторых длин волн коэффициенты τ и ρ равны практически нулю и соответственно значение коэффициента α близко к единице. Различие в значениях коэффициентов α, τ и ρ и их зависимость от цвета (длины волны) обусловливают чрезвычайное разнообразие в цветах и оттенках различных тел.

§167. Цветные тела, освещенные белым светом. Окрашенные тела кажутся цветными при освещении белым светом. Если

слой краски достаточно толст, то цвет тела определяется ею и не зависит от свойств лежащих под краской слоев. Обычно краска представляет собой мелкие зернышки, избирательно рассеивающие свет и погруженные в прозрачную связывающую их

Гл. XIX. Дисперсия света и цвета тел

399

массу, например масло. Коэффициенты α, ρ и τ этих зернышек и определяют собой свойства краски.

Действие краски схематически изображено на рис. 316. Самый верхний слой отражает практически одинаково все лучи, т. е. от него идет белый свет. Доля его не очень значительна, около 5 %. Остальные 95 % света проникают в глубь краски и, рассеиваясь ее зернами, выходят наружу. При этом происходит поглощение части света в зернах краски, причем те или иные спектральные участки поглощаются в большей или меньшей степени в зависимости от цвета краски. Часть света, проникающая еще глубже, рассеивается на следующих слоях зерен и т. д. В результате тело, освещенное белым светом, будет иметь цвет, обусловленный значениями коэффициентов α, τ и ρ для зерен покрывающей его краски.

Рис. 316. Схема действия слоя краски

Краски, поглощающие падающий на них свет в очень тонком слое, называются кроющими. Краски, действие которых обусловлено участием многих слоев зерен, носят название лессировочных. Последние позволяют добиваться очень хороших эффектов путем смешивания нескольких сортов цветных зерен (стирание на палитре). В результате можно получить разнообразные цветовые эффекты. Интересно отметить, что смешение лессировочных красок, соответствующих дополнительным цветам, должно привести к очень т е м н ы м о т т е н к а м. Действительно, пусть в краске смешаны красные и зеленые зерна. Свет, рассеянный красными зернами, будет поглощаться зелеными и наоборот, так что из слоя краски свет почти не будет выходить. Таким образом, смешение красок дает совершенно иные результаты,

400

Гл. XIX. Дисперсия света и цвета тел

чем смешение света соответствующих цветов. Это обстоятельство должен иметь в виду художник при смешивании красок.

§ 168. Цветные тела, освещенные цветным светом. Все вышесказанное относится к освещению белым светом. Если же спектральный состав падающего света значительно отличается от дневного, то эффекты освещения могут быть совершенно иными. Яркие красочные места цветной картины выглядят темными, если в падающем свете отсутствуют как раз те длины волн, для которых эти места имеют большой коэффициент отражения. Даже переход от дневного освещения к искусственному вечернему может значительно изменить соотношение оттенков. В дневном свете относительная доля желтых, зеленых и синих лучей гораздо больше, чем в искусственном свете. Поэтому желтые и зеленые материи кажутся при вечернем освещении более тусклыми, чем днем, а синяя при дневном свете ткань нередко кажется совсем черной при лампах. С этим обстоятельством должны считаться художники и декораторы, выбирающие краски для театрального представления или для парада, происходящего днем на открытом воздухе.

Во многих производствах, где важна правильная оценка оттенков, например при сортировке пряжи, работа при вечернем освещении очень затруднена или даже совсем невозможна. Поэтому в подобных условиях рационально применение ламп дневного света, т. е. ламп, спектральный состав света которых был бы по возможности близок к спектральному составу дневного освещения (см. § 187).

§ 169. Маскировка и демаскировка. Даже при ярком освещении мы не в состоянии различать тела, цвет которых не отличается от цвета окружающего фона, т. е. тела, для которых коэффициент ρ имеет для всех длин волн практически те же значения, что и для фона. Поэтому, например, так трудно различить животных с белым мехом или людей в белой одежде на снежной равнине. Этим пользуются в военном деле для цветовой маскировки войск и военных объектов. В природе, в процессе естественного отбора, многие животные приобрели защитную окраску (мимикрия).

Из вышеизложенного понятно, что наиболее совершенной маскировкой является подбор такой окраски, у которой коэффициент отражения ρ для в с е х д л и н в о л н имеет те же значения, что и у окружающего фона. Практически этого очень трудно достичь, и поэтому нередко ограничиваются подбором близких коэффициентов отражения для излучения, которое играет особо важную роль при дневном освещении и наблюдении глазом.