
- •1. Биология: ее задачи, объект и методы исследования.
- •2. Сущность жизни, уровни организации живого. Фундаментальные свойства живого, клетка – элементарная биологическая единица.
- •3. Клеточная теория: основные этапы развития.
- •4. Типы клеточной организации. Про- и эукариотические клетки, особенности строения и жизнедеятельности.
- •5. Вирусы: строение, организация генетического материала, медицинское значение.
- •6. Клетка как открытая система: Потоки вещества, энергии и информации в клетке.
- •7. Элементарный химический состав живого. Вода и низкомолекулярные соединения клетки.
- •8. Строение и биологические функции белков клетки.
- •9.Строение и биологические функции липидов клетки.
- •10.Строение и биологические функции угливодов клетки.
- •11.Строение и биологические функции нуклеиновых кислот
- •12.Строение и биологические функции плазматической мембраны. Реснички и жгутики, микроворсинки. Тетрд
- •13.Плазматические мембраны (тетрД)
- •14.Контакты и мммежклеточные коммуникации эукариотической клетки
- •15.Клетка как целостная структура. Коллоидная система цитоплазмы (гиалоплазма).
- •16.Ультраструктурная организация клеток человека.
- •17.Структурная организация эукариотической клетки (тетрд)
- •18.Одномембранные органеллы клетки: канальцевая и вакуолярная система клетки — эпс, Комплекс Гольджи, диктиосомы, лизосомы, микротельца, пероксисомы. Их строение и функции.
- •19. Трубчатые структуры клетки: центриоли, базальные тела, жгутики, реснички, элементы цитоскелета.
- •20.Строение и функции митохондрий
- •21.Включения клеток.
- •22.Строение и функции клеточного ядра. (тетр)
- •23.Уровни организации хроматина: нуклеосомная нить, элементарная хроматиновая фибрилла, интерфазная хромонема, метафазная хроматида, их значение в митотическом цикле.
- •24.Политенные хромосомы, хромосомы типа ламповых щеток, их строение и функциональное значение.
- •25. Обмен веществ и превращение энергии (роль атф в жиз-ти кл-и)—основа жизнедеятельности клетки
- •26.Передача насл.Инф-ии при делении сомат.Клеток.Жиз-й цикл клетки.Интерфаза.Митоз.Митотический индекс. Нарушение митоза.
- •27.Прямое деление клеток: амитоз. К-митоз, эндомитоз, политения.
- •28. Мейоз, его биологическое значение и цитологическая и цитогенетическая характеристики: редукция числа хромосом, конъюгация, кроссинговер, случайное расхождение хромосом в дочерние клетки.
- •29. Бесполое размножение, его виды и биологическое значение.
- •30. Биологическое значение и сущность полового размножения, его виды
- •31.Нерегулярные типы полового размножения.
- •32. Биологические аспекты репродукции человека
- •33. Половой диморфизм: генетический, морфофизиологический, эндокринный и поведенческий аспекты.
- •34.Морфологическое строение хромосом. Кариотип.
- •35.Генетическая сущность полового размножения. Гаметогенез. Оплодотворение
- •36.Менделирующие и мультифакторные признаки человека.
- •37. Наследование признаков при полном и неполном доминировании и кодоминировании.
- •38. Законы Менделя. Первый закон Менделя (правило единообразия).
- •39. Возвратное и анализирующее скрещивания.
- •40. Третий закон Менделя или закон независимого наследования при дигибридном (полигибридном) скрещивании.
- •41.Множественный аллелизм. Наследование групп крови у человека в системе ав0.
- •42. Статистический характер расщепления. Критерий хи-квадрат (χ 2)
- •43.Наследование признаков при взаимодействии неаллельных генов. Комплементарность.Эпистаз.Полимерия.Плеотропия и модифицирующее действие генов.
- •44. Сцепленное наследование. Закон т. Моргана. Группы сцепления. Методы генетического картирования. Соматическая гибридизация, её значение в установлении групп сцепления человека.
- •45.Типы определения пола. Типы хромосомного определения пола. Наследование признаков, сцепленных с полом.
- •46. Доказательство ведущей роли днк в наслед-ти. Трансформация, трансдукция
- •47. Нуклеиновые кислоты, их строение, свойства и функции, локализация
- •48. Типы рнк и их роль в синтезе белка клетки.
- •49. Генетический код. Основные свойства генетического кода. Расшифровка генетического кода в процессе синтеза белка в клетке.
- •50. Генетическая инжене́рия (генная инженерия) Синтез и выделение генов. Плазмиды. Достиж-я ген. Инжен-ии в медиц-е.
- •51. Понятие «ген». Развитие представлений о нем. Ген-регулятор, ген-оператор, струкрт-е гены,оперон.
- •52. Реализация ген. Информации: Транскрипция, посттраннскрипционные процессы (процесинг и слайсинг)
- •53. Уникальные свойства днк: репликация и репарация.
- •54. Цитоплазматические гены и их роль в цитоплазматической наследственности.
- •55. Генетическо-модифицированные объекты. Их медико-биологическе значение.
- •56. Использование генетической информации в процессе жизнедеятельности: трансляция, этапы биосинтеза белка.
- •57. Организация генома прокариот
- •58. Особенности экспрессии у прокариот.
- •59. Методы изучения днк. Секвенирование генома. Современная геномика.
- •60. Регуляция синтеза белка в клетке прокариотов по Жакобу и Моно
- •61. Мутационная изменчивость. Мутационная теория г. Де Фриза. Закон гомологических рядов в наследственной изменчивости н.Н. Вавилова. Спонтанные и индуцированные мутации. Классификация мутаций.
- •62. Хромосомные аберрации, их типы. Значение хромосомных аберраций в изменчивости.
- •63. Точковые мутации. Репарирующие системы клетки.
- •64. Индуцированный мутагенез и понятие о мутагенах.
- •65. Множественный аллелизм, наследование признаков и взаимодействие аллелей при множественном аллелизме.
- •66. Модификационная изменчивость. Норма реакции. Методы изучения модификационной изменчивости.
- •67. Особенности человека как объекта генетических исследований, его биосоциальная природа.
- •68. Генетический полиморфизм человека. Мутации и их роль в развитии заболеваний.
- •70. Биосоциальная природа человека. Методы генетики человека и их характеристика.. Цитогенетический метод, его сущность и возможности.
- •71.Генеалогический метод изуч-я наслежования признаков у чел-а. Составление и анализ родословных.
- •72.Популяционно-статистический метод
- •73. Генетика человека. Близнецовый метод, сущность и значение.
- •74. Генетическая структура менделевской популяции. Закон Харди-Вайнберга.
- •75. Морфофункциональная характеристика и классификация хромосом. Кариотип человека. Цитогенетический метод. Денверская и Парижская номенклатура кариотипа человека.
- •76. Предмет и история эмбриологии. Перформизм и эпигенез.
- •77. Онтогенез. Периодизация онтогенеза. Видоизменения онтогенеза: эмбрионизация. Деэмбрионизация, ноотения.
- •78. Гаметогенез. Сперматогенез. Оогенез, особенности строения половых клеток.
- •79. Генетическая сущность оплодотворения. Нарушения оплодотворения, нерегулярные типы оплодотворения.
- •80. Оплодотворение и ооплазматическая сегрегация
- •81. Дробление. Нарушения дробления
- •82. Гастр-я и органогенез. Возмож-е нарушения.
- •83. Дифференциация и интеграция в развитии. Аномалии и пороки развития.
- •84. Роль наследственности и среды в онтогенезе.
- •85. Механизмы онтогенеза на клеточном и организменном уровнях: размножение¸рост, диффер-ка, морфогенез.
- •86. Постнатальный онтогенез.
- •87. Биолог-е старение на различных уровнх орг-ции орг-ма. Проблемы долголетия.
- •88. Регенерация органов и тканей, физиологическая и репаративная регенерация.
- •89. Филогенез систем органов хордовых.
- •90.Трансплантация эмбрионов. Аллофенные животные.
- •91. Трасплантация орг-в и тканей, тканевая несовместимость.
- •92. Гомеостаз, его закономерности в живых организмах. Генетические, клеточные и системные основы гомеостатических реакций многоклеточного организма.
- •93. Иммунологи-е механизмы гомеостаза. Проблемы трансплантации.
- •94. Иммунологическая совместимость. Резус конфликт.
- •95. Паразитизм как биологический феномен. Адаптации к паразитизму. Взаимодействие в системе паразит-хозяин. Эволюция паразитизма под воздействием антропогенного фактора.
- •96. Тип Простейшие. (Protozoa) Класс Саркодовые (Sarcodina). Значение для медицины.
- •97. Тип Простейшие. Класс Жгутиковые. Значение для медицины
- •98. Тип Простейшие. Класс Споровики. Значение для медицины.
- •99. Тип Простейшие. Класс Инфузории (Ciliophora) Значение для медицины.
- •100. Тип Плоские черви. Plathelminthes Класс Сосальщики. Trematoda Значение для медицины.
- •101. Тип Плоские черви. Класс Ленточные черви. Значение для медицины. Класс Cestoidea (Ленточные черви)
- •Цестодозы Вооруженный цепень, или свиной солитер (Taenia solium)
- •Невооруженный цепень, или бычий солитер, или бычий цепень (Taeniarhynchus saginatus)
- •Лентец широкий (Diphyllobothrium latum)
- •102. Тип Круглые черви. Значение для медицины.
- •Пищеварительная система
- •Выделительная система
- •Нервная система
- •Половой диморфизм
- •Цикл развития
- •Острица.
- •103. Овогельминтоскопия. Методы капрологического анализа.
- •104. Тип Членистоногие. Класс Паукообразные. Значение для медицины.
- •105. Тип Членистоногие. Класс Насекомые. Значение для медицины.
- •106. Сущность эволюции. Микро - и макроэволюция. Характеристика механизмов и основных результатов.
- •107. Биологический вид и его определение. Критерии вида.
- •108. Популяция - элементарная эволюционная единица
- •109. Элементарные эволюционные факторы.
- •1. Изменчивость
- •110.Микроэволюционные процессы в популяциях людей.
- •Особенности мутационного процесса
- •Особенности действия изоляции
- •Особенности популяционных волн
- •111. Происхождение жизни и эволюция орг-го мира.
- •1. Догеологическая эра
- •2. Архейская эра
- •3. Протерозойская эра
- •4. Палеозойская эра
- •5. Мезозойская эра
- •6. Кайнозойская эра
- •112. Естественный отбор. Специфика действия естественного отбора в человеческих популяциях.
- •113. Соотношения между онтогенезом и филогенезом. Биогенетический закон.
- •114.Происхождение человека.
70. Биосоциальная природа человека. Методы генетики человека и их характеристика.. Цитогенетический метод, его сущность и возможности.
Генетика человека – это особый раздел генетики, который изучает особенности наследования признаков у человека, наследственные заболевания (медицинская генетика), генетическую структуру популяций человека. Генетика человека является теоретической основой современной медицины и современного здравоохранения.
В настоящее время твердо установлено, что в живом мире законы генетики носят всеобщий характер, действительны они и для человека.
Однако, поскольку человек – это не только биологическое, но и социальное существо, генетика человека отличается от генетики большинства организмов рядом особенностей:
– для изучения наследования человека неприменим гибридологический анализ (метод скрещиваний); поэтому для генетического анализа используются специфические методы: генеалогический (метод анализа родословных), близнецовый, а также цитогенетические, биохимические, популяционные и некоторые другие методы;
– для человека характерны социальные признаки, которые не встречаются у других организмов, например, темперамент, сложные коммуникационные системы, основанные на речи, а также математические, изобразительные, музыкальные и иные способности;
– благодаря общественной поддержке возможно выживание и существование людей с явными отклонениями от нормы (в дикой природе такие организмы оказываются нежизнеспособными).
Генетика человека изучает особенности наследования признаков у человека, наследственные заболевания (медицинская генетика), генетическую структуру популяций человека. Генетика человека является теоретической основой современной медицины и современного здравоохранения. Известно несколько тысяч собственно генетических заболеваний, которые почти на 100% зависят от генотипа особи. К наиболее страшным из них относятся: кислотный фиброз поджелудочной железы, фенилкетонурия, галактоземия, различные формы кретинизма, гемоглобинопатии, а также синдромы Дауна, Тернера, Кляйнфельтера. Кроме того, существуют заболевания, которые зависят и от генотипа, и от среды: ишемическая болезнь, сахарный диабет, ревматоидные заболевания, язвенные болезни желудка и двенадцатиперстной кишки, многие онкологические заболевания, шизофрения и другие заболевания психики.
Для изучения генетики человека разработаны и успешно используются следующие методы: клинико-генеалогический (метод родословных), популяционно-статистический(методы, используемые для установления частот генов и генотипов в популяции, демонстрирующие характер их изменения под влиянием окружающей среды и различных факторов популяционной динамики, называются популяционно-статистические), близнецовый(с помощью близнецового метода можно выявить наследственный характер признака, определить пенетрантность аллеля, оценить эффективность действия на организм некоторых внешних факторов (лекарственных препаратов, обучения, воспитания), дерматоглифики и пальмоскопии(в настоящее время установлена наследственная обусловленность кожных узоров. Вероятно, признак наследуется полигенно, на характер пальцевого и ладонного узоров оказывает влияние материнский организм через механизм цитоплазматической наследственности. Дерматоглифические исследования важны при идентификации зиготности близнецов), цитогенетический(методы генетики соматических клеток в значительной мере компенсируют невозможность применения к человеку метода гибридологического анализа. Благодаря разработке методов генетики соматических клеток человек оказался включенным в группу объектов экспериментальной генетики), молекулярно-цитогенетические: биохимические, молекулярно-генетические методы и метод генетики соматических клеток. На основании совокупности методов основана пренатальная диагностика наследственных заболеваний. На лабораторных занятиях подробно изучаются клинико-гениалогический, цитогенетический и популяционно-статистический методы, а также статистическое изучение модификационной изменчивости. Для формулировки научно обоснованных выводов необходимо использовать методы биометрии.
Задачи медицинской генетики заключаются в своевременном выявлении носителей этих заболеваний среди родителей, выявлении больных детей и выработке рекомендаций по их лечению. Большую роль в профилактике генетически обусловленных заболеваний играют генетико-медицинские консультации и пренатальная диагностика (то есть выявление заболеваний на ранних стадиях развития организма).
Существуют специальные разделы прикладной генетики человека (экологическая генетика, фармакогенетика, генетическая токсикология), изучающие генетические основы здравоохранения. При разработке лекарственных препаратов, при изучении реакции организма на воздействие неблагоприятных факторов необходимо учитывать как индивидуальные особенности людей, так и особенности человеческих популяций.
Цитогенетический метод
Теоретическая часть. Цитологический метод основан на микроскопическом изучении хромосом в клетках человека. Цитогенетический метод широко применяется с 1956 года, когда Дж. Тио и Л. Леван установили, что в кариотипе человека 46 хромосом.
Цитогенетический метод основывается на данных о хромосомах. В 1960 году на научной конференции в Денвере была принята классификация идентифицируемых хромосом, в соответствии с которой им были даны номера, увеличивающиеся по мере уменьшения размеров хромосом. Эта классификация была уточнена на конференции в Лондоне (1963) и Чикаго (1966).
Применение цитогенетического метода позволяет изучать нормальную морфологию хромосом и кариотипа в целом, определять генетический пол организма, и, главное, диагностировать различные хромосомные болезни, связанные с изменением числа хромосом или с нарушением структуры хромосом. Цитогенетический метод позволяет изучать процессы мутагенеза на уровне хромосом и кариотипа. Метод широко применяется в медико-генетическом консультировании для целей пренатальной диагностики хромосомных болезней.
В соматических клетках человека диплоидный набор хромосом, 2n=46, а в половых – гаплоидный n=23. При оплодотворении диплоидный набор хромосом восстанавливается.
В хромосоме выделяют короткое (р) и длинное (q) плечи. Концы обоих плеч хромосомы называют теломерами. В метафазе митоза хромосомы представлены двумя сестринскими хроматидами, соединенными центромерой. В центромере содержится вещество – кинетохор, участвующее в формировании нитей веретена при клеточном делении.
При изучении кариотипа определяют следующие морфометрические характеристики хромосом: Lа – абсолютная длина хромосомы в мкм; Lр – длина короткого плеча; Lg – длина длинного плеча. Iв – плечевой индекс, Iс – центромерный индекс, Lr – относительная длина хромосомы, Ih - процент гетерохроматиновой зоны, Is – индекс спирализации.
По значению плечевого индекса определяется форма хромосом. При Iв 1-1,9 хромосома называется равноплечей (метацентрической), 2-4,9 – слабонеравноплечей (субметацентрической), 5 и более – акроцентрической или резко неравноплечей.
Для кариотипирования подбирают метафазные пластинки в количестве не менее 30 с одинаковым индексом спирализации.
На основании различий в длине выделены 23 пары хромосом. По форме в кариотипе человека имеются метацентрические, субметацентрические и акроцентрические хромосомы. Отнесение хромосом к той или иной группе производится на основе расчета центромерного индекса. На основании размеров и комбинации плечевого и центромерного индексов хромосомы человека в соответствии с Международной Денверской классификацией (1960) сгруппированы в 7 групп, обохзначаемых буквами английского алфавита: A, B, C, D, E, F, G.
Цитогенетический метод используют для изучения нормального кариотипа человека, а также при диагностике наследственных заболеваний, связанных с геномными и хромосомными мутациями.
Кроме того, этот метод применяют при исследовании мутагенного действия различных химических веществ, пестицидов, инсектицидов,лекарственных препаратов и др.
В период деления клеток на стадии метафазы хромосомы имеют более четкую структуру и доступны для изучения. Диплоидный набор человека состоит из 46 хромосом:
22 пар аутосом и одной пары половых хромосом (XX — у женщин, XY — у мужчин). Обычно исследуют лейкоциты периферической крови человека, которые помещают в специальную питательную среду, где они делятся. Затем готовят препараты и анализируют число и строение хромосом. Разработка специальных методов окраски значительно упростила распознавание всех хромосом человека, а в совокупности с генеалогическим методом и методами клеточной и генной инженерии дала возможность соотносить гены с конкретными участками хромосом. Комплексное применение этих методов лежит в основе составления карт хромосом человека.
Цитологический контроль необходим для диагностики хромо- сомных болезней, связанных с ансуплоидией и хромосомными мутациями. Наиболее часто встречаются болезнь Дауна(трисомия по 21-й хромосоме), синдром Клайнфелтера (47 XXY), синдром Шершевского — Тернера (45 ХО) и др. Потеря участка одной изгомологичных хромосом 21-й пары приводит к заболеванию крови — хроническому миелолейкозу.
При цитологических исследованиях интерфазных ядер со- матических клеток можно обнаружить так называемое тельце Барри, или половой хроматин. Оказалось, что половой хроматин в норме есть у женщин и отсутствует у мужчин. Он представляет собой результат гетерохроматизации одной из двух Х-хромосом у женщин. Зная эту особенность, можно идентифицировать половую принадлежность и выявлять аномальное количество Х-хромосом.
Выявление многих наследствен- ных заболеваний возможно еще до рождения ребенка. Метод пренатальной диагностики заключается в получении околоплодной жидкости, где находятся клетки плода, и в последующем биохимическом и цитологическом определении возможных наследственных аномалий. Это позволяет поставить диагноз на ранних сроках беременности и принять решение о се продолжении или прерывании.