
- •1. Биология: ее задачи, объект и методы исследования.
- •2. Сущность жизни, уровни организации живого. Фундаментальные свойства живого, клетка – элементарная биологическая единица.
- •3. Клеточная теория: основные этапы развития.
- •4. Типы клеточной организации. Про- и эукариотические клетки, особенности строения и жизнедеятельности.
- •5. Вирусы: строение, организация генетического материала, медицинское значение.
- •6. Клетка как открытая система: Потоки вещества, энергии и информации в клетке.
- •7. Элементарный химический состав живого. Вода и низкомолекулярные соединения клетки.
- •8. Строение и биологические функции белков клетки.
- •9.Строение и биологические функции липидов клетки.
- •10.Строение и биологические функции угливодов клетки.
- •11.Строение и биологические функции нуклеиновых кислот
- •12.Строение и биологические функции плазматической мембраны. Реснички и жгутики, микроворсинки. Тетрд
- •13.Плазматические мембраны (тетрД)
- •14.Контакты и мммежклеточные коммуникации эукариотической клетки
- •15.Клетка как целостная структура. Коллоидная система цитоплазмы (гиалоплазма).
- •16.Ультраструктурная организация клеток человека.
- •17.Структурная организация эукариотической клетки (тетрд)
- •18.Одномембранные органеллы клетки: канальцевая и вакуолярная система клетки — эпс, Комплекс Гольджи, диктиосомы, лизосомы, микротельца, пероксисомы. Их строение и функции.
- •19. Трубчатые структуры клетки: центриоли, базальные тела, жгутики, реснички, элементы цитоскелета.
- •20.Строение и функции митохондрий
- •21.Включения клеток.
- •22.Строение и функции клеточного ядра. (тетр)
- •23.Уровни организации хроматина: нуклеосомная нить, элементарная хроматиновая фибрилла, интерфазная хромонема, метафазная хроматида, их значение в митотическом цикле.
- •24.Политенные хромосомы, хромосомы типа ламповых щеток, их строение и функциональное значение.
- •25. Обмен веществ и превращение энергии (роль атф в жиз-ти кл-и)—основа жизнедеятельности клетки
- •26.Передача насл.Инф-ии при делении сомат.Клеток.Жиз-й цикл клетки.Интерфаза.Митоз.Митотический индекс. Нарушение митоза.
- •27.Прямое деление клеток: амитоз. К-митоз, эндомитоз, политения.
- •28. Мейоз, его биологическое значение и цитологическая и цитогенетическая характеристики: редукция числа хромосом, конъюгация, кроссинговер, случайное расхождение хромосом в дочерние клетки.
- •29. Бесполое размножение, его виды и биологическое значение.
- •30. Биологическое значение и сущность полового размножения, его виды
- •31.Нерегулярные типы полового размножения.
- •32. Биологические аспекты репродукции человека
- •33. Половой диморфизм: генетический, морфофизиологический, эндокринный и поведенческий аспекты.
- •34.Морфологическое строение хромосом. Кариотип.
- •35.Генетическая сущность полового размножения. Гаметогенез. Оплодотворение
- •36.Менделирующие и мультифакторные признаки человека.
- •37. Наследование признаков при полном и неполном доминировании и кодоминировании.
- •38. Законы Менделя. Первый закон Менделя (правило единообразия).
- •39. Возвратное и анализирующее скрещивания.
- •40. Третий закон Менделя или закон независимого наследования при дигибридном (полигибридном) скрещивании.
- •41.Множественный аллелизм. Наследование групп крови у человека в системе ав0.
- •42. Статистический характер расщепления. Критерий хи-квадрат (χ 2)
- •43.Наследование признаков при взаимодействии неаллельных генов. Комплементарность.Эпистаз.Полимерия.Плеотропия и модифицирующее действие генов.
- •44. Сцепленное наследование. Закон т. Моргана. Группы сцепления. Методы генетического картирования. Соматическая гибридизация, её значение в установлении групп сцепления человека.
- •45.Типы определения пола. Типы хромосомного определения пола. Наследование признаков, сцепленных с полом.
- •46. Доказательство ведущей роли днк в наслед-ти. Трансформация, трансдукция
- •47. Нуклеиновые кислоты, их строение, свойства и функции, локализация
- •48. Типы рнк и их роль в синтезе белка клетки.
- •49. Генетический код. Основные свойства генетического кода. Расшифровка генетического кода в процессе синтеза белка в клетке.
- •50. Генетическая инжене́рия (генная инженерия) Синтез и выделение генов. Плазмиды. Достиж-я ген. Инжен-ии в медиц-е.
- •51. Понятие «ген». Развитие представлений о нем. Ген-регулятор, ген-оператор, струкрт-е гены,оперон.
- •52. Реализация ген. Информации: Транскрипция, посттраннскрипционные процессы (процесинг и слайсинг)
- •53. Уникальные свойства днк: репликация и репарация.
- •54. Цитоплазматические гены и их роль в цитоплазматической наследственности.
- •55. Генетическо-модифицированные объекты. Их медико-биологическе значение.
- •56. Использование генетической информации в процессе жизнедеятельности: трансляция, этапы биосинтеза белка.
- •57. Организация генома прокариот
- •58. Особенности экспрессии у прокариот.
- •59. Методы изучения днк. Секвенирование генома. Современная геномика.
- •60. Регуляция синтеза белка в клетке прокариотов по Жакобу и Моно
- •61. Мутационная изменчивость. Мутационная теория г. Де Фриза. Закон гомологических рядов в наследственной изменчивости н.Н. Вавилова. Спонтанные и индуцированные мутации. Классификация мутаций.
- •62. Хромосомные аберрации, их типы. Значение хромосомных аберраций в изменчивости.
- •63. Точковые мутации. Репарирующие системы клетки.
- •64. Индуцированный мутагенез и понятие о мутагенах.
- •65. Множественный аллелизм, наследование признаков и взаимодействие аллелей при множественном аллелизме.
- •66. Модификационная изменчивость. Норма реакции. Методы изучения модификационной изменчивости.
- •67. Особенности человека как объекта генетических исследований, его биосоциальная природа.
- •68. Генетический полиморфизм человека. Мутации и их роль в развитии заболеваний.
- •70. Биосоциальная природа человека. Методы генетики человека и их характеристика.. Цитогенетический метод, его сущность и возможности.
- •71.Генеалогический метод изуч-я наслежования признаков у чел-а. Составление и анализ родословных.
- •72.Популяционно-статистический метод
- •73. Генетика человека. Близнецовый метод, сущность и значение.
- •74. Генетическая структура менделевской популяции. Закон Харди-Вайнберга.
- •75. Морфофункциональная характеристика и классификация хромосом. Кариотип человека. Цитогенетический метод. Денверская и Парижская номенклатура кариотипа человека.
- •76. Предмет и история эмбриологии. Перформизм и эпигенез.
- •77. Онтогенез. Периодизация онтогенеза. Видоизменения онтогенеза: эмбрионизация. Деэмбрионизация, ноотения.
- •78. Гаметогенез. Сперматогенез. Оогенез, особенности строения половых клеток.
- •79. Генетическая сущность оплодотворения. Нарушения оплодотворения, нерегулярные типы оплодотворения.
- •80. Оплодотворение и ооплазматическая сегрегация
- •81. Дробление. Нарушения дробления
- •82. Гастр-я и органогенез. Возмож-е нарушения.
- •83. Дифференциация и интеграция в развитии. Аномалии и пороки развития.
- •84. Роль наследственности и среды в онтогенезе.
- •85. Механизмы онтогенеза на клеточном и организменном уровнях: размножение¸рост, диффер-ка, морфогенез.
- •86. Постнатальный онтогенез.
- •87. Биолог-е старение на различных уровнх орг-ции орг-ма. Проблемы долголетия.
- •88. Регенерация органов и тканей, физиологическая и репаративная регенерация.
- •89. Филогенез систем органов хордовых.
- •90.Трансплантация эмбрионов. Аллофенные животные.
- •91. Трасплантация орг-в и тканей, тканевая несовместимость.
- •92. Гомеостаз, его закономерности в живых организмах. Генетические, клеточные и системные основы гомеостатических реакций многоклеточного организма.
- •93. Иммунологи-е механизмы гомеостаза. Проблемы трансплантации.
- •94. Иммунологическая совместимость. Резус конфликт.
- •95. Паразитизм как биологический феномен. Адаптации к паразитизму. Взаимодействие в системе паразит-хозяин. Эволюция паразитизма под воздействием антропогенного фактора.
- •96. Тип Простейшие. (Protozoa) Класс Саркодовые (Sarcodina). Значение для медицины.
- •97. Тип Простейшие. Класс Жгутиковые. Значение для медицины
- •98. Тип Простейшие. Класс Споровики. Значение для медицины.
- •99. Тип Простейшие. Класс Инфузории (Ciliophora) Значение для медицины.
- •100. Тип Плоские черви. Plathelminthes Класс Сосальщики. Trematoda Значение для медицины.
- •101. Тип Плоские черви. Класс Ленточные черви. Значение для медицины. Класс Cestoidea (Ленточные черви)
- •Цестодозы Вооруженный цепень, или свиной солитер (Taenia solium)
- •Невооруженный цепень, или бычий солитер, или бычий цепень (Taeniarhynchus saginatus)
- •Лентец широкий (Diphyllobothrium latum)
- •102. Тип Круглые черви. Значение для медицины.
- •Пищеварительная система
- •Выделительная система
- •Нервная система
- •Половой диморфизм
- •Цикл развития
- •Острица.
- •103. Овогельминтоскопия. Методы капрологического анализа.
- •104. Тип Членистоногие. Класс Паукообразные. Значение для медицины.
- •105. Тип Членистоногие. Класс Насекомые. Значение для медицины.
- •106. Сущность эволюции. Микро - и макроэволюция. Характеристика механизмов и основных результатов.
- •107. Биологический вид и его определение. Критерии вида.
- •108. Популяция - элементарная эволюционная единица
- •109. Элементарные эволюционные факторы.
- •1. Изменчивость
- •110.Микроэволюционные процессы в популяциях людей.
- •Особенности мутационного процесса
- •Особенности действия изоляции
- •Особенности популяционных волн
- •111. Происхождение жизни и эволюция орг-го мира.
- •1. Догеологическая эра
- •2. Архейская эра
- •3. Протерозойская эра
- •4. Палеозойская эра
- •5. Мезозойская эра
- •6. Кайнозойская эра
- •112. Естественный отбор. Специфика действия естественного отбора в человеческих популяциях.
- •113. Соотношения между онтогенезом и филогенезом. Биогенетический закон.
- •114.Происхождение человека.
62. Хромосомные аберрации, их типы. Значение хромосомных аберраций в изменчивости.
Хромосомные аберрации – изменение структуры хромосом, связанное с разрывом хромосом (при воздействии на ядро радиации или химических веществ). Можно выделить основные типы хромосомных мутаций:
1.Делеция- утрата одного, нескольких нуклеотидов или целого гена.
потеря 5 хромосомы - синдром "кошачьего крика" (плачь ребенка напоминает мяуканье кошки)
2. транслокация — обмен участками между негомологичными хромосомами, как результат — изменение группы сцепления генов
3.Дупликация- повторное дублирование участка ДНК размером от одного до нескольких нуклеотидов или целого гена
Семейная Х-сцепленная кардиомиопатия
4.Инверсия- встраивание от одного до двух нуклеотидов на прежнее место ДНК после поворота на 180 градусов. В результате нарушается порядок нуклеотидов в гене.
Гемофилия А
5. фрагментация – разрыв хромосомы в нескольких местах.
Хромосомные мутации часто приводят к патологическим нарушениям в организме, но в то же время хромосомные перестройки сыграли одну из ведущих ролей в эволюции. Так, у человека 23 пары хромосом, а у обезьяны - 24. Таким образом, различие составляет всего одна хромосома. Ученые предполагают, что в процессе эволюции произошла хотя бы одна перестройка. Подтверждением этого может служить и тот факт, что 17 хромосома человека отличается от такой же хромосомы шимпанзе лишь одной перецентрической инверсией. Такие рассуждения во многом подтверждают теорию Дарвина. Таким образом, хромосомные мутации приводят к изменению функционирования генов и имеют значение в эволюции вида.
63. Точковые мутации. Репарирующие системы клетки.
Генные м.- генные ( точечные )изменения в наследственной информации отдельного гена. Возникает новая форма состояния гена. Генная мутация называется точечной.
Генные мутации составляют основную долю всех мутаций, например, у человека заболевания серповидно-клеточная анемия , вызвано заменой глутаминовой кислоты на валин в одной из цепей гемоглобина, так, что вызывает деформацию эритроцитов крови, несущих измененный гемоглобин.
Дупликация- удвоение пары или нескольких пар нуклеотидов
Инсерция- вставка пары или нескольких пар нуклеотидов
Делеция - выпадение пары или нескольких пар нуклеотидов
Инверсия - перестановка фрагмента гена во фрагменте исходной последовательности
Замена - замена пары или нескольких пар нуклеотидов на другую или другие
Примеры заболеваний
1. Изучение генетических болезней, обусловленных мутациями в генах гемоглобина, сыграло важную роль в развитии молекулярной генетики. В первую очередь это относится к серповидноклеточной анемии , при которой эритроциты имеют необычную серповидную форму, что обусловленно наличием в таких эритроцитах дефектного гемоглобина (молекула гемоглобина взрослого человека состоит из четырех белковых цепей: двух альфа-цепей и двух бета-цепей).
Кроме мутации, вызывающей серповидноклеточную анемию, выявлено множество других мутаций, которые приводят к нарушению синтеза бета- цепей.
2 .Ахроматопсия (ахромазия, цветовая слепота) - отсутствие цветового зрения при сохранении черно-белого восприятия.
Ахроматопсия - генетический дефект (рецессивный признак, переносимый половой хромосомой), при котором отсутствуют одна или несколько функций колбочек. Нормальные люди являются трихроматами, у них три колбочковых механизма. Дихроматы лишены одного из этих механизмов. Состояние, связанное с неспособностью колбочек поглощать длинноволновый (красный) свет, называется протанопией , средневолновый (зеленый) - дейтеранопией , коротковолновый (синий) - тританопией . У монохроматов утеряны все три (иногда два) колбочковых механизма.
Генные мутации приводят к изменению строения молекул белков и к появлению новых признаков и свойств (например, альбиносы у животных и растений, махровость у цветков за счет преобразования тычинок в лепестки и снижение их плодовитости, образование летальных и полулетальных генов, вызывающих гибель организма, и т. д.). Генные мутации происходят пoд влиянием мутагенных факторов (биологических, физических химических) или спонтанно (случайно). Генные мутации свойственны и генетической РНК вирусов.
Репарация (от лат.репарацио – восстановление) – 1) ликвидация повреждения генетических структур (ДНК, хромосом), осуществляется специальными ферментами и находится под контролем генов; процесс, направленный против возникновения мутаций; репарация свойственна всем живым организмам; 2) восстановление тканей тела и состава популяций организмов, поврежденных или изреженных ионизирующим излучением или ультрафиолетовыми лучами. Происходит посредством размножения клеток и организмов, уцелевших после облучения.
Повреждения в ДНК сводятся к минимуму благодаря существованию систем, которые узнают эти повреждения и исправляют их. Поэтому определяемая частота мутаций – спонтанных и индуцированных – отражает равновесие между числом повреждающих событий, происходящих в ДНК, и количеством повреждений, которые были исправлены (или неправильно исправлены). Значение репарирующих систем в жизни клетки так велико, что, вероятно, по сложности они не отличаются от репликационного аппарата.
Под "повреждением" понимают любое изменение ДНК, которое вызывает отклонение от обычной двухцепочечной структуры. Неправильные нуклеотиды, как правило, удаляются из ДНК системой эксцизионной репарации (от англ. excision – вырезание). На первом этапе поврежденная структура узнается либо ферментом специфической эндонуклеазой, либо ферментом специфической ДНК-гликозилазой. К специфическим эндонуклеазам относится, например, фермент УФ-эндонуклеаза, узнающий тиминовый димер. В каждой клетке существует также не менее 20 различных специфических ДНК-гликозилаз, узнающих какой-либо один тип измененных оснований в ДНК.
В том случае, когда нарушение структуры ДНК заключается в неправильном спаривании обычных оснований, репарирующая система не может определить, какое из оснований правильное. В этом случае возможен случайный выбор для удаления одного из неспаренных оснований. Но во многих случаях может быть применена рекомбинационная репарация, которая использует материал одной молекулы ДНК (из гомологичной хромосомы) для восстановления другой.