
- •Abstract
- •Acknowledgements
- •Highlights
- •Executive summary
- •Findings and recommendations
- •Electric mobility is developing at a rapid pace
- •Policies have major influences on the development of electric mobility
- •Technology advances are delivering substantial cost reductions for batteries
- •Strategic importance of the battery technology value chain is increasingly recognised
- •Other technology developments are contributing to cost cuts
- •Private sector response confirms escalating momentum for electric mobility
- •Outlooks indicate a rising tide of electric vehicles
- •Electric cars save more energy than they use
- •Electric mobility increases demand for raw materials
- •Managing change in the material supply chain
- •Safeguarding government revenue from transport taxation
- •New mobility modes have challenges and offer opportunities
- •References
- •Introduction
- •Electric Vehicles Initiative
- •EV 30@30 Campaign
- •Global EV Pilot City Programme
- •Scope, content and structure of the report
- •1. Status of electric mobility
- •Vehicle and charger deployment
- •Light-duty vehicles
- •Stock
- •Cars
- •Light-commercial vehicles
- •Sales and market share
- •Cars
- •Light-commercial vehicles
- •Charging infrastructure
- •Private chargers
- •Publicly accessible chargers
- •Small electric vehicles for urban transport
- •Stock and sales
- •Two/three-wheelers
- •Low-speed electric vehicles
- •Charging infrastructure
- •Buses
- •Stock and sales
- •Charging infrastructure
- •Trucks
- •Stock and sales
- •Charging infrastructure
- •Other modes
- •Shipping
- •Aviation
- •Energy use and well-to-wheel GHG emissions
- •Electricity demand and oil displacement
- •Well-to-wheel GHG emissions
- •References
- •2. Prospects for electric mobility development
- •Electric mobility targets: Recent developments
- •Country-level targets
- •City-level targets
- •Policy updates: Vehicles and charging infrastructure
- •Charging standards
- •Hardware
- •Communication protocols
- •Supporting policies
- •Canada
- •China
- •Vehicle policies
- •Charging infrastructure policies
- •Industrial policies
- •European Union
- •Vehicle policies
- •Charging infrastructure policies
- •Industrial policy
- •India
- •Vehicle policies
- •Charging infrastructure policies
- •Japan
- •Vehicle policies
- •Charging infrastructure policies
- •Industrial policy
- •Korea
- •Vehicle policies
- •Charging infrastructure
- •Industrial policy
- •United States
- •Vehicle policies
- •Charging infrastructure
- •Industrial policy
- •Other countries
- •The emergence of a Global Electric Mobility Programme
- •Industry roll-out plans
- •Vehicles
- •Light-duty vehicles
- •Two/three-wheelers
- •Buses
- •Trucks
- •Automotive batteries
- •Charging infrastructure
- •References
- •3. Outlook
- •Scenario definitions
- •Electric vehicle projections
- •Policy context for the New Policies Scenario
- •Global results
- •Two/three-wheelers
- •Light-duty vehicles
- •Buses
- •Trucks
- •Regional insights
- •China
- •Europe
- •India
- •Japan
- •United States and Canada
- •Other countries
- •Implications for automotive batteries
- •Capacity of automotive batteries
- •Material demand for automotive batteries
- •Charging infrastructure
- •Private chargers
- •Light-duty vehicles
- •Buses
- •Private charging infrastructure for LDVs and buses
- •Publicly accessible chargers for LDVs
- •Impacts of electric mobility on energy demand
- •Electricity demand from EVs
- •Structure of electricity demand for EVs in the New Policies Scenario
- •Structure of electricity demand for EVs in the EV30@30 Scenario
- •Implications of electric mobility for GHG emissions
- •References
- •4. Electric vehicle life-cycle GHG emissions
- •Context
- •Methodology
- •Key insights
- •Detailed assessment
- •Life-cycle GHG emissions: drivers and potential for emissions reduction
- •Effect of mileage on EV life-cycle GHG emissions
- •Effect of vehicle size and power on EV life-cycle emissions
- •Effect of power system and battery manufacturing emissions on EV life-cycle emissions
- •References
- •5. Challenges and solutions for EV deployment
- •Vehicle and battery costs
- •Challenge
- •EV purchase prices are not yet competitive with ICE vehicles
- •Indications from the total cost of ownership analysis
- •Effect of recent battery cost reductions on the cost gap
- •Impacts of developments in 2018 on the total cost of ownership
- •Solutions
- •Battery cost reductions
- •Reducing EV costs with simpler and innovative design architectures
- •Adapting battery sizes to travel needs
- •Supply and value chain sustainability of battery materials
- •Challenges
- •Solutions
- •Towards sustainable minerals sourcing via due diligence principles
- •Initiatives for better battery supply chain transparency and sustainable extractive activities
- •Bridging the gap between due diligence principles and on-the-ground actions
- •Battery end-of-life management
- •Implications of electric mobility for power systems
- •Challenges
- •Solutions
- •Potential for controlled EV charging to deliver grid services and participate in electricity markets
- •Enabling flexibility from EVs
- •Importance of policy actions to enable EV participation in markets
- •Government revenue from taxation
- •Challenges
- •Solutions
- •Near-term options
- •Long-term solutions
- •Shared and automated mobility
- •Challenges
- •Solutions
- •References
- •Statistical annex
- •Electric car stock
- •New electric car sales
- •Market share of electric cars
- •Electric light commercial vehicles (LCV)
- •Electric vehicle supply equipment stock
- •References
- •Acronyms, abbreviations and units of measure
- •Acronyms and abbreviations
- •Units of measure
- •Table of contents
- •List of Figures
- •List of Boxes
- •List of Tables
Global EV Outlook 2019 |
Introduction |
Scope, content and structure of the report
This report analyses the development of the global EV market to end-2018. It includes recent policy developments for the main markets relevant for EV and supply equipment for deployment, technology development and the outlook for EVs to 2030. It focuses on electric vehicles, including full battery electric vehicles (BEVs) and plug-in hybrid vehicles (PHEVs) used in road transport applications. Its geographic scope attempts to be as broad as possible, despite data availability challenges.
The analyses are presented in five chapters.
•Chapter 1 looks at development of the EV market until the end of 2018, covering EV registrations (vehicle sales), EV stock estimates (mainly based on cumulative sales) and the availability and characteristics of the supply equipment they require.
•Chapter 2 looks at key determinants of the future prospects for EV uptake. It provides an overview of the current policy environment, followed by an analysis of the response of private sector stakeholders to policy signals, taking into account announcements made by automotive companies, battery manufacturers and stakeholders involved in the development of EV charging infrastructure.
•Chapter 3 presents the outlook to 2030. It focuses on projections of EVs and chargers, evaluating the impacts that these have on energy use, well-to-wheel greenhouse gas emissions, battery production volumes and material demand. It does so in the context of two scenarios. The New Policies Scenario aims to illustrate the consequences of announced policy ambitions. The EV30@30 Scenario represents the ambition of a global application of the EV30@30 Campaign and a progressive reduction of the carbon intensity of power generation, in line with the projections of the IEA Sustainable Development Scenario.
•Chapter 4 focuses on the assessment of GHG emissions over the life cycle of EVs, comparing performance with competing powertrain technologies.
•Chapter 5 looks at a number of areas where electric mobility may be facing important challenges. It suggests options to overcome them. It covers vehicle and battery cost developments, supply and value chain sustainability of battery materials, implications of electric mobility for power systems, government revenue from taxation and the interplay between electric, shared and automated mobility.
PAGE | 31
IEA. All rights reserved.