
- •Abstract
- •Acknowledgements
- •Highlights
- •Executive summary
- •Findings and recommendations
- •Electric mobility is developing at a rapid pace
- •Policies have major influences on the development of electric mobility
- •Technology advances are delivering substantial cost reductions for batteries
- •Strategic importance of the battery technology value chain is increasingly recognised
- •Other technology developments are contributing to cost cuts
- •Private sector response confirms escalating momentum for electric mobility
- •Outlooks indicate a rising tide of electric vehicles
- •Electric cars save more energy than they use
- •Electric mobility increases demand for raw materials
- •Managing change in the material supply chain
- •Safeguarding government revenue from transport taxation
- •New mobility modes have challenges and offer opportunities
- •References
- •Introduction
- •Electric Vehicles Initiative
- •EV 30@30 Campaign
- •Global EV Pilot City Programme
- •Scope, content and structure of the report
- •1. Status of electric mobility
- •Vehicle and charger deployment
- •Light-duty vehicles
- •Stock
- •Cars
- •Light-commercial vehicles
- •Sales and market share
- •Cars
- •Light-commercial vehicles
- •Charging infrastructure
- •Private chargers
- •Publicly accessible chargers
- •Small electric vehicles for urban transport
- •Stock and sales
- •Two/three-wheelers
- •Low-speed electric vehicles
- •Charging infrastructure
- •Buses
- •Stock and sales
- •Charging infrastructure
- •Trucks
- •Stock and sales
- •Charging infrastructure
- •Other modes
- •Shipping
- •Aviation
- •Energy use and well-to-wheel GHG emissions
- •Electricity demand and oil displacement
- •Well-to-wheel GHG emissions
- •References
- •2. Prospects for electric mobility development
- •Electric mobility targets: Recent developments
- •Country-level targets
- •City-level targets
- •Policy updates: Vehicles and charging infrastructure
- •Charging standards
- •Hardware
- •Communication protocols
- •Supporting policies
- •Canada
- •China
- •Vehicle policies
- •Charging infrastructure policies
- •Industrial policies
- •European Union
- •Vehicle policies
- •Charging infrastructure policies
- •Industrial policy
- •India
- •Vehicle policies
- •Charging infrastructure policies
- •Japan
- •Vehicle policies
- •Charging infrastructure policies
- •Industrial policy
- •Korea
- •Vehicle policies
- •Charging infrastructure
- •Industrial policy
- •United States
- •Vehicle policies
- •Charging infrastructure
- •Industrial policy
- •Other countries
- •The emergence of a Global Electric Mobility Programme
- •Industry roll-out plans
- •Vehicles
- •Light-duty vehicles
- •Two/three-wheelers
- •Buses
- •Trucks
- •Automotive batteries
- •Charging infrastructure
- •References
- •3. Outlook
- •Scenario definitions
- •Electric vehicle projections
- •Policy context for the New Policies Scenario
- •Global results
- •Two/three-wheelers
- •Light-duty vehicles
- •Buses
- •Trucks
- •Regional insights
- •China
- •Europe
- •India
- •Japan
- •United States and Canada
- •Other countries
- •Implications for automotive batteries
- •Capacity of automotive batteries
- •Material demand for automotive batteries
- •Charging infrastructure
- •Private chargers
- •Light-duty vehicles
- •Buses
- •Private charging infrastructure for LDVs and buses
- •Publicly accessible chargers for LDVs
- •Impacts of electric mobility on energy demand
- •Electricity demand from EVs
- •Structure of electricity demand for EVs in the New Policies Scenario
- •Structure of electricity demand for EVs in the EV30@30 Scenario
- •Implications of electric mobility for GHG emissions
- •References
- •4. Electric vehicle life-cycle GHG emissions
- •Context
- •Methodology
- •Key insights
- •Detailed assessment
- •Life-cycle GHG emissions: drivers and potential for emissions reduction
- •Effect of mileage on EV life-cycle GHG emissions
- •Effect of vehicle size and power on EV life-cycle emissions
- •Effect of power system and battery manufacturing emissions on EV life-cycle emissions
- •References
- •5. Challenges and solutions for EV deployment
- •Vehicle and battery costs
- •Challenge
- •EV purchase prices are not yet competitive with ICE vehicles
- •Indications from the total cost of ownership analysis
- •Effect of recent battery cost reductions on the cost gap
- •Impacts of developments in 2018 on the total cost of ownership
- •Solutions
- •Battery cost reductions
- •Reducing EV costs with simpler and innovative design architectures
- •Adapting battery sizes to travel needs
- •Supply and value chain sustainability of battery materials
- •Challenges
- •Solutions
- •Towards sustainable minerals sourcing via due diligence principles
- •Initiatives for better battery supply chain transparency and sustainable extractive activities
- •Bridging the gap between due diligence principles and on-the-ground actions
- •Battery end-of-life management
- •Implications of electric mobility for power systems
- •Challenges
- •Solutions
- •Potential for controlled EV charging to deliver grid services and participate in electricity markets
- •Enabling flexibility from EVs
- •Importance of policy actions to enable EV participation in markets
- •Government revenue from taxation
- •Challenges
- •Solutions
- •Near-term options
- •Long-term solutions
- •Shared and automated mobility
- •Challenges
- •Solutions
- •References
- •Statistical annex
- •Electric car stock
- •New electric car sales
- •Market share of electric cars
- •Electric light commercial vehicles (LCV)
- •Electric vehicle supply equipment stock
- •References
- •Acronyms, abbreviations and units of measure
- •Acronyms and abbreviations
- •Units of measure
- •Table of contents
- •List of Figures
- •List of Boxes
- •List of Tables

Global EV Outlook 2019 |
Findings and recommendations |
|
|
|
|
chain can enable industry to access raw materials for batteries securing supplies from resource-rich countries or capitalising on the local availability of these resources. To address critical issues in the supply chains of raw materials, governments should work towards the improvement of their traceability and transparency.
The development of binding regulatory frameworks8 will be important to support the efforts started by the international multi-stakeholder co-operation, underpinned by the OECD Due Diligence Guidance for responsible mineral supply chains.
End-of-life management of batteries is essential to reduce dependency on critical raw materials and to limit risks of shortages. There are policy options to manage this within the 3R (reduce, reuse and recycle) framework, specifically for batteries within the reuse and recycle elements. Regarding reuse, it is important to ensure regulations for end-of-life of automotive batteries enables their use in second-life applications (as opposed to disposal and as an alternative to recycling). Regarding recycling, several countries have set standards for battery waste management including the recycling rate for the entire battery. Governments need to strengthen these regulatory frameworks to ensure their suitability with the expected transition to EVs. The focus should move towards the development of requirements on the design phase for battery products that take into account the need to maximise the recovery of materials during end-of-life treatment of batteries while minimising costs. Thorough stakeholder consultation is important given the dynamic nature of battery technology advances.
References
ACEA (European Automobile Manufacturers Association) (2019), Truck makers react to final CO2 deal setting first-ever EU standards for heavy-duty vehicles, www.acea.be/press-releases/article/truck- makers-react-to-final-co2-deal-setting-first-ever-eu-standards-for-he.
EAFO (European Alternative Fuels Observatory) (2019), EAFO, http://www.eafo.eu (accessed during March and April 2019).
EV Volumes (2019), EV Data Center, www.ev-volumes.com/datacenter/ (assessed 15 March 2019).
Marklines (2019), Marklines, www.marklines.com/portal_top_en.html (accessed during March and April 2019).
OICA (International Organization of Motor Vehicle Manufacturers) (2019). OICA, www.oica.net/ (accessed in February 2019).
8 One example is the loi devoir de vigilance adopted in 2017 by the French government. It forces companies to establish and publish their strategies to identify and prevent environmental, human right abuses and corruption risks not only for their own work, but also on their suppliers and subsidiaries’ activities in France and abroad.
PAGE | 27
IEA. All rights reserved.