- •Foreword
- •Table of Contents
- •List of Figures, Tables and Boxes
- •Figures
- •Boxes
- •Tables
- •The 2016 Framework Agreement on Energy Policy
- •Moving to a fully renewables-based electricity system
- •Targeting energy efficiency
- •Ensuring oil and gas security
- •Key recommendations
- •2. General energy policy
- •Country overview
- •Supply and demand
- •Primary energy supply
- •Energy consumption is relatively stable
- •Main institutions
- •Policy
- •2016 Energy Agreement
- •2017 Climate Policy Framework
- •2019 January Agreement
- •Long-term scenarios
- •Demand
- •Supply
- •Assessment
- •Recommendations
- •3. Energy, climate change and transport
- •Overview
- •Climate policy framework
- •The EU climate framework
- •Sweden’s new National Climate Framework
- •The climate targets
- •The Climate Act
- •The Climate Policy Council
- •Climate investment support programme – Climate Leap
- •Transport emissions and policies
- •Energy consumption in transport
- •Policies introduced to reduce emissions from road transport
- •Emission reduction obligation
- •The bonus-malus system (“feebate”) within light-vehicle taxation
- •National transport infrastructure plan 2018-29
- •Energy efficiency in transport
- •Electromobility
- •EV market
- •EV infrastructure and charging
- •Other types of electrified transport
- •Assessment
- •Transport emissions in focus for new targets and policy
- •Electric vehicles require new infrastructure
- •Sweden should keep a broad approach to transport policy
- •Recommendations
- •4. Energy efficiency
- •Overview
- •Energy intensity per capita and GDP
- •Energy intensity target
- •Energy consumption by sector
- •Industry sector consumption
- •Residential and commercial consumption
- •Regulatory framework
- •The Energy Efficiency Directive
- •Other EU directives on energy efficiency
- •National institutions
- •National policies and measures
- •Policies for energy efficiency in buildings
- •Performance standards for new buildings
- •Support for the increased energy efficiency of rental houses
- •Tax reduction for renovations
- •Increased competence in energy-efficient building techniques
- •Policies for energy efficiency in industry
- •Public procurement for energy efficiency
- •Assessment
- •Sweden is on track to meet its energy intensity targets
- •Sectoral strategies should align with the intensity target
- •Buildings remain an important area for energy efficiency
- •Recommendations
- •5. Heat and district heating
- •Overview
- •Supply and demand
- •Heat sources in buildings
- •DH supply
- •Co-generation in DH
- •District cooling
- •DH markets and regulation
- •The liberalised DH market
- •DH prices
- •The “Price Dialogue”
- •Market development
- •Future heat demand
- •Future fuel supply
- •Integration of heat and power systems
- •Assessment
- •Biomass and waste has decarbonised district heating
- •The price dialogue brings more transparency on the market
- •District heating is facing changing market conditions
- •Recommendations
- •6. Energy technology research, development and demonstration
- •Overview
- •Strategies and programmes
- •Research areas in more detail
- •Sustainable power system and renewable energy resources
- •Bioenergy
- •Transport system
- •Industrial processes
- •Buildings in the energy system
- •General energy system studies with social and interdisciplinary perspectives
- •Business development and commercialisation
- •Sustainable society
- •International partnerships
- •Funding
- •Monitoring and evaluation
- •International collaboration
- •Assessment
- •Recommendations
- •7. Electricity
- •Overview
- •Supply and demand
- •Electricity generation and trade are increasing
- •Large increase in wind power capacity projected to continue
- •Electricity consumption is stable
- •Institutions and legal framework
- •Institutions
- •A liberalised low-carbon energy-only market
- •Support for renewable electricity
- •The electricity certificate system
- •Wind power licensing and siting
- •Small-scale renewables receive additional support
- •Transmission and distribution networks
- •Transmission
- •Congestion management
- •Cross-border connections
- •Cross-border TSO collaboration
- •Distribution
- •Allocation of grid connection costs
- •Generation
- •Market design
- •Wholesale market
- •Nordic balancing market
- •Retail market and prices
- •Security of supply
- •Strategic reserve
- •Regional security collaboration
- •Assessment
- •Wholesale electricity market
- •Security of supply
- •Retail market
- •Increasing renewable electricity supply
- •Recommendations
- •8. Nuclear energy
- •Overview
- •Nuclear policy
- •Taxation
- •Institutions
- •Nuclear safety
- •Incidents of note
- •Fuel cycle, waste management and decommissioning
- •Front end of the fuel cycle
- •Waste management: Very-low, low and intermediate waste
- •Waste management: High-level waste
- •Decommissioning
- •Funding
- •Communication to stakeholders
- •Assessment
- •Recommendations
- •9. Oil and biofuels
- •Overview
- •Supply and demand
- •Oil consumption is declining
- •Sweden imports all its crude oil; oil products are net export
- •Biofuels have rapidly increased, mostly through imports
- •Infrastructure
- •Refineries
- •Ports
- •Storage
- •Retail market and prices
- •Security of supply
- •Emergency response policy
- •Emergency stocks
- •Compliance and monitoring
- •Drawdown procedures
- •Demand restraint
- •Assessment
- •Recommendations
- •10. Natural gas and biogas
- •Overview
- •Supply and demand
- •Support for biogas production
- •Regulatory framework
- •Infrastructure
- •Industry and market structure
- •Prices
- •Security of supply
- •Assessment
- •Recommendations
- •ANNEX A: Organisations visited
- •Review criteria
- •Review team and preparation of the report
- •Organisation visited
- •ANNEX B: Energy balances and key statistical data
- •Footnotes to energy balances and key statistical data
- •ANNEX C: International Energy Agency “Shared Goals”
- •ANNEX D: Glossary and list of abbreviations
- •Acronyms and abbreviations
- •Units of measure
5. HEAT AND DISTRICT HEATING
few heat and power plants in cities connected to the gas transmission grid in the southwest of the country, mainly in Malmö and Gothenburg. Coal is used mostly for peak generation in a few remaining heat and power plants, plus as base load in Värtaverket in Stockholm, which the owner has decided to phase out by 2022. Oil boilers mainly supply peak load in some DH systems, and, in some places, bio-oil has replaced fossil fuel oil.
Co-generation in DH
Co-generation of heat and electricity enables a more efficient use of energy resources compared to separate production in power plants and heat boilers. Furthermore, co-generation contributes to a stable power supply. The electricity certificate system, which was introduced in 2003, encourages co-generation rather than heat-only boilers when burning biofuels.
In 2016, co-generation accounted for 73% of the total DH generation and 10% of the total electricity generation in Sweden (Figure 5.6). For DH generation, this corresponds to a large increase, from 57% in 2002 when the certificate system had not yet been introduced. Until 2010, the share of co-generation in power generation also increased. In recent years, however, the rapid increase in wind power has led to a lower share of co-generation in the total power generation.
Figure 5.6 Share of co-generation in DH and electricity generation, 1980-2017
Share of co-generation |
|
|
|
|
|
|
|
|
|
|
||
80% |
|
|
|
|
|
|
|
|
|
|
|
Share in |
|
|
|
|
|
|
|
|
|
|
|
|
|
70% |
|
|
|
|
|
|
|
|
|
|
|
district heating |
60% |
|
|
|
|
|
|
|
|
|
|
|
Share in |
50% |
|
|
|
|
|
|
|
|
|
|
|
electricity |
|
|
|
|
|
|
|
|
|
|
|
|
|
40% |
|
|
|
|
|
|
|
|
|
|
|
|
30% |
|
|
|
|
|
|
|
|
|
|
|
|
20% |
|
|
|
|
|
|
|
|
|
|
|
|
10% |
|
|
|
|
|
|
|
|
|
|
|
|
0% |
|
|
|
|
|
|
|
|
|
|
|
|
1981 |
1984 |
1987 |
1990 |
1993 |
1996 |
1999 |
2002 |
2005 |
2008 |
2011 |
2014 |
2017 |
The share of co-generation in DH has increased in recent decades, supported by the electricity certificate system since 2003.
Note: The lines refer to the share of total production of DH and electricity that comes from co-generation plants (which can be operated in different ways, e.g. to maximise electricity generation or for pure heat generation).
Source: IEA (2019 forthcoming), World Energy Balances 2019 preliminary edition, www.iea.org/statistics/.
District cooling
District cooling (DC), used in some of the larger cities in Sweden, is mainly supplied to industries, offices and commercial buildings and public services, e.g. shopping malls and hospitals. Stockholm has the largest DC network, which accounts for close to half of the total DC supply in Sweden, supplied by efficient heat pumps in connection with DH production. In 2016, DC supply amounted to around 1 TWh (Figure 5.7). Nearly all DC networks were installed in the past two decades, but the growth has stalled in recent years.
72
IEA. All rights reserved.
