
- •Abstract
- •Highlights
- •Executive summary
- •Actions to boost flexibility and investment
- •Modelling analyses
- •Spot markets and trade
- •Advanced power system flexibility
- •International implications
- •Findings and recommendations
- •Report context and objectives
- •Drivers of change in power systems
- •Rapid growth of wind and solar PV
- •Power system flexibility
- •Phases of VRE integration
- •Priority areas for system transformation
- •Modelling approach
- •Spot markets and regional trade
- •Advanced power system flexibility
- •Investment certainty
- •Renewable energy policy
- •Market design and planning
- •Wholesale market design
- •Retail market design
- •Upgraded planning frameworks
- •International implications
- •Technical analysis
- •Introduction
- •Context and status of power system transformation in China
- •Background
- •Economically shifting gears
- •Ecological civilisation
- •Power system transformation
- •Brief introduction to China’s power system
- •Current status of power system in China
- •General perspective
- •How the power system works in China
- •Historical evolution
- •Power sector reform in 2015
- •Challenges in China’s power sector
- •Planning
- •Interprovincial and interregional trading
- •Dispatching order
- •Benchmark pricing system
- •Renewable development and integration
- •Emerging trends in system transformation in China
- •Introducing flexible market operation
- •Establishing spot markets
- •Incremental distribution grid pilots
- •Unlocking the retail side
- •Power plant flexibility pilots
- •Realising optimised planning
- •Five-year plan
- •Long-term strategy
- •Technological innovation and electrification
- •Distributed energy
- •Multi-energy projects, microgrids and “Internet+” smart energy
- •Digitalisation
- •Demand-side management/demand-side response
- •Electricity storage
- •EV development
- •Clean winter heating programme
- •Summary
- •References
- •Power system transformation and flexibility
- •Three global trends in power systems
- •Low-cost wind power and solar photovoltaics
- •Digitalisation
- •Rise of DER
- •Distributed solar PV
- •Electricity-based clean heating
- •Implications for power systems
- •Flexibility as the core concept of power system transformation
- •Properties of VRE generators
- •Phases of system integration
- •Different timescales of system flexibility
- •Layers of system flexibility
- •Redefining the role of system resources
- •Differentiating energy volume and energy option contributions
- •Evolving grids
- •From passive demand to load shaping
- •Implications for centralised system resources
- •Operational regime shifts for thermal assets
- •Matching VRE to system requirements
- •Increasing need for advanced grid solutions
- •Deploying advanced grid solutions
- •Multiple deployment opportunities for large-scale storage
- •Optimising the use of PSH
- •Embracing the versatility of grid-scale batteries
- •Synthetic fuels and other long-term storage options
- •Large-scale load shaping
- •Industrial demand response
- •Efficient industry electrification
- •Implications for DER
- •System benefits of energy efficiency
- •Mobilising the load through EVs
- •Targeting energy efficiency for system flexibility
- •Engaging distributed battery storage
- •Distributed generation for system services
- •Aggregation for load shaping
- •References
- •Policy, market and regulatory frameworks for power system transformation
- •Basic principles to unlock flexibility
- •Wholesale market design
- •General setup
- •Short-term markets (minutes to hours)
- •Medium-term markets (month to three years)
- •Long-term investment market (three years and beyond)
- •Economic dispatch and rapid trading
- •Cross-regional trade of electricity
- •Benefits of regional power system integration
- •Centralised versus decentralised models of integration
- •Market integration in the European Union
- •Market organisation
- •Attracting investment in low-carbon generation capacity
- •SV as a key concept for renewable and low-carbon energy development
- •System-friendly VRE deployment
- •German market premium system
- •Mexican clean energy and capacity auctions
- •Pricing of externalities
- •Impact of CO2 pricing on daily and long-term operations in the power market
- •Policy packages and interactions
- •Electricity sector design
- •Retail markets and distributed energy resources
- •Retail pricing reform
- •Degrees of granularity for retail tariffs
- •Compensating DER
- •Implications for general policy design
- •Revisiting roles and responsibilities
- •The DSO-TSO interface
- •Aggregators
- •Role of ISOs
- •Centralised and decentralised platforms for DER engagement
- •Elements of structural reform
- •Policy principles for DER
- •Upgraded planning frameworks
- •Integrated planning incorporating demand-side resources
- •Integrated generation and network planning
- •Integrated planning between the power sector and other sectors
- •Interregional planning
- •Including system flexibility assessments in long-term planning
- •Planning for distribution grids
- •Improved screening/study techniques
- •Including local flexibility requirements in planning techniques
- •Policy principles for planning and infrastructure
- •Transition mechanisms to facilitate system reforms
- •Mexico’s legacy contracts for the regulated supplier
- •Transition from the public service regime
- •Transition from the private-party regime (self-supply)
- •Treatment of “stranded costs” in the United States
- •References
- •Power system transformation pathways for China to 2035
- •General trends in China’s power system evolution
- •Achieving a “Beautiful China”
- •Key variables for system transformation
- •Different power system pathways
- •Two main scenarios for 2035
- •Power sector modelling cases analysed for the NPS
- •Power sector modelling cases analysed for the SDS
- •Description of power system model used for analysis
- •Power sector modelling results
- •Comparing basic features of the WEO 2018 NPS and SDS results
- •NPS modelling cases
- •High-level summary of results
- •Value of moving from fair dispatch to economic dispatch
- •Value of unlocking interregional trading
- •A closer look at VRE-rich regions
- •SDS modelling cases
- •High-level summary of the results
- •Understanding an SDS power system without advanced flexibility options: SDS-Inflex
- •Assessing individual flexibility options
- •Understanding the value of DSR deployment: SDS-DSR
- •Understanding the value of electricity storage: SDS-Storage
- •Understanding the value of smart EV charging: SDS-EV
- •Assessing portfolios of flexibility options
- •Understanding the value of a portfolio of DSR and EVs: SDS-DSR+EV
- •Understanding the value of a portfolio of storage and EVs: SDS-Storage+EV
- •Understanding the value of a combined portfolio of smart EV charging, DSR and storage: SDS-Full flex
- •Summary
- •References
- •Summary and conclusions
- •Power system transformation in China
- •China has already embarked on its own pathway to power system optimisation.
- •Integrating variable renewable energy and an orderly reduction of coal power will be the primary challenges for successful power system optimisation.
- •Power system flexibility will become the most important attribute of a transformed power system.
- •Different layers of the power system need to be addressed in order to achieve system transformation successfully.
- •The alignment and integration of different policies and measures in the power sector and related sectors are pivotal to long-term success.
- •Optimising the dispatch of power plants is a fundamental prerequisite for reducing power generation costs and preserving VRE investability.
- •Creating short-term markets and robust short-term price signals can greatly facilitate power system transformation and reduce system-wide energy prices.
- •The optimised use of existing and soon-to-be-built transmission lines can substantially reduce renewable energy curtailment and integrate additional wind and solar capacity.
- •Optimising power system operation is bound to trigger the market exit of inefficient coal generators; this process is likely to need active management.
- •Innovative options to further accelerate progress towards a “Beautiful China”
- •Optimised use of demand-shaping techniques is critical to unlock very high shares of renewable energy cost-effectively.
- •Electric mobility has great potential for integrating renewable energy, but only if charging patterns are optimised.
- •Applying digital technologies to the distribution grid and at the customer level can unlock additional flexibility and is an opportunity for economic development.
- •Additional considerations for markets, policies, regulation and planning
- •Advanced renewable energy policies can minimise integration challenges.
- •Advanced design of wholesale markets, including markets for system services, is an important tool to accelerate power system transformation.
- •Changes to electricity tariffs could help optimise the deployment and use of distributed energy resources (DER).
- •Integrated long-term planning that includes demand shaping and advanced options for energy storage is a crucial foundation for a successful transformation of the power system.
- •International implications
- •Accelerated progress on power sector optimisation could bring substantial benefits for China and the world.
- •References
- •Annexes
- •Annex A. Spatial disaggregation of national demand and supply
- •Modelling regions and interconnections
- •Defining modelling regions and regional interconnections
- •Creating regional electricity demand profiles
- •Generating hourly load profiles for each region
- •Allocating generation capacity between regions
- •Method used for calculating CAPEX savings
- •References
- •Acronyms
- •Acknowledgements, contributors and credits
- •Table of contents
- •List of figures
- •List of boxes
- •List of tables

China Power System Transformation |
Findings and recommandations |
Figure 5. Operational costs, inflexible and flexible cases, NPS, 2035
USD/MWh
45.0
40.0
35.0
30.0
25.0
20.0
15.0
10.0
5.0
0.0
NPS-Inflex |
NPS-Full flex |
Notes: Mt = million tonnes; MWh = megawatt hour; O&M = operation and maintenance.
Mt
5 000 |
|
|
4 500 |
|
|
4 000 |
|
Carbon cost |
|
||
3 500 |
|
|
|
|
|
3 000 |
|
Other O&M cost |
|
||
|
||
2 500 |
|
|
2 000 |
|
Fuel cost |
|
||
|
||
1 500 |
|
|
1 000 |
CO22emissiois i n |
|
|
500 |
|
0 |
|
The introduction of economic dispatch, higher levels of regional trading and additional grid infrastructure can help to reduce operational costs and CO2 emissions and brings savings of USD 63 billion annually.
Advanced power system flexibility
Activating the demand side, including EVs, and targeted use of electricity storage are crucial to delivering an accelerated transformation of the power system.
Power system flexibility is the most important cornerstone of a transformed power system with a high share of VRE. In the SDS, VRE resources account for 35% of electricity generation on average. However, in some regions these numbers are much higher. For example, in the Northwest region VRE covers 73% of electricity demand. This requires unprecedented levels of system flexibility, including advanced technologies to ensure system stability. Relying on advanced technologies enabled by digitalisation allows for the reliable integration of very high proportions of variable generation without any excessive curtailment in 2035 under the SDS.
Advanced technologies – enabled by digitalisation – reduce the need to rely on power plants to provide flexibility. The modelling under the SDS combines a broad range of advanced flexibility options. Their impacts have been estimated on the basis of detailed bottom-up modelling of future electricity demand in China, assuming that advanced technologies can unlock the flexibility potential. The assumed flexibility options for this report are:
Approximately 300 GW of residential, commercial, agricultural and industrial-sector load contributing to DSR programmes are in place in 2035, with enrolled resources spanning space heating and cooling, water heating, refrigeration and cleaning appliances.
220 million EVs are made available under smart charging schemes in China in 2035, which corresponds to approximately 250 GW of peak EV charging load and 800 terawatt hours of total annual EV charging load.
Over 100 GW of pumped storage hydro and over 50 GW of battery energy storage are deployed.
PAGE | 16
IEA. All rights reserved

China Power System Transformation |
Findings and recommandations |
The benefits and costs of the different flexibility options are quantified for this study – in all cases they bring net benefits under the SDS in 2035 (Figure 6).
Figure 6. Benefits and costs of different advanced power system flexibility options, SDS, 2035
Billion USD/year
80.0 |
70.0 |
60.0 |
50.0 |
40.0 |
30.0 |
20.0 |
10.0 |
- |
-10.0 |
|
SDS-DSR |
SDS-Storage |
SDS-EV |
SDS-DSR+EV |
|
SDS-Storage+EV |
SDS-Full flex |
||||||
|
OPEX_fuel |
|
OPEX_carbon |
|
OPEX_other O&M |
|
CAPEX_peak generation |
|
CAPEX_flexibility measure Total |
||||
|
|
|
|
|
|||||||||
|
|
|
|
|
Notes: CAPEX = capital expenditure; OPEX = operational expenditure.
Advanced power system flexibility measures can bring substantial benefits for power system transformation.
Working in concert, these options can greatly improve the match between wind and solar PV supply and electricity demand. Indeed, the modelling analysis finds that these options can substantially reduce the need for flexible power generation – by 300 GW, or 30% of the total installed fossil fuel generation capacity under the SDS in 2035.
The use of advanced flexibility options is found to be highly cost-effective compared to the SDS without their presence. Using these options to their maximum potential could lead to total net savings of USD 64 billion annually. This considers both reduced operating costs (including CO2 emission costs at a price of USD 100/tonne) and avoided capital costs for power plants. This number accounts for the investment required to install advanced flexibility capabilities.
Increasing power system flexibility beyond readily available options, such as coal power plants, is thus one of the most important priorities for facilitating the rapid transformation of the power system towards higher proportions of variable generation.
Investment certainty
A stable investment environment for clean energy technologies remains crucial. The benefits of introducing short-term markets are clearly demonstrated by the modelling carried out for this study. However, the introduction of economic dispatch and spot pricing of electricity could bring new challenges for the system. The investment framework in China after the Document 5 reform provided a high level of certainty for all players. Prices are guaranteed via the regulated on-grid tariff, while operating hours are secured via the fair dispatch system. This arrangement cannot be maintained in the future, due to its contradiction with the efficient operation of the system. This therefore raises the question of how sufficient investment certainty can be ensured for clean energy technologies. This issue is particularly relevant
Page | 17
IEA. All rights reserved
China Power System Transformation |
Findings and recommandations |
because clean energy technologies tend to have high up-front costs and low operating costs. This makes the cost of financing a key driver for the cost of delivered electricity. In turn, risk and risk perceptions determine financing costs. As a consequence, this means that mitigating investment risk will become even more important in the future than it has been in the past.
The two most important risks for power generators are price risk and volume risk. Market premium systems and contracts for difference have proven to be effective tools to mitigate price risk while integrating clean energy into spot markets, as examples across Europe demonstrate. As regards volume risk (curtailment risk), a variety of mechanisms are available, including compensation for curtailed energy. In the specific context of China, the quota system currently under consideration could serve this purpose, ensuring sufficient market demand to prioritise clean energy use.
Renewable energy policy
Advanced renewable energy policies that focus on system value can minimise integration challenges. As the share of renewable energy grows in the Chinese power system, the interactions between renewables and the broader electricity system need to be considered in the design of renewable energy policies. This usually becomes evident through the emergence of “hotspots” of VRE deployment, where penetration levels are much higher than the national average and integration challenges become significant. An initial approach to this issue is the geographic and technological diversification of VRE deployment. A variety of measures can achieve this, such as limiting permits for new installations in certain regions, differentiating remuneration levels regionally or by time of production, or giving specific incentives for smallerscale installations – China has implemented a number of these options in the past years with some success. However, there are additional possibilities to enhance the system integration of renewables by use of deployment policies. The concept of system value (SV) is critical in this regard.
Considering the value of electricity to the overall system opens a new perspective on the challenge of VRE integration and power system transformation. The value of electricity depends on when and where it is generated, particularly in a power system with a high proportion of VRE. During certain times, an abundance of generation can coincide with relatively low demand – in such cases, the value of electricity will be low. Conversely, when little generation is available and demand is high, the value of electricity will be high.
The SV of a power generation technology is defined as the net benefit arising from its addition to the power system. While the conceptual framework applies to all power generation technologies, the focus here is on wind and solar power plants. The SV is determined by the interplay of positive and negative effects arising from the addition. On the positive side are all those factors included in the assessment that lead to cost reductions; these include reduced fuel costs, reduced CO2 and other pollutant emission costs, reduced need for other generation capacity, reduced water requirements and possibly reduced need for grid usage and associated losses. On the negative side are increases in certain costs, such as higher costs of cycling conventional power plant and for additional grid infrastructure.
Spot markets can be a very useful tool for providing appropriate signals to VRE developers and operators. By exposing VRE plants to the varying prices on the spot market, they can be encouraged to build power plants that generate as much as possible at times and in places where electricity is valuable – and where prices are higher than average. However, such approaches need to strike a balance between creating an incentive for system-friendly deployment while also providing sufficient investment certainty. Advanced market premium
PAGE | 18
IEA. All rights reserved