Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

книги / 47

.pdf
Скачиваний:
57
Добавлен:
07.06.2023
Размер:
11.92 Mб
Скачать

Напряженноесостояние вконтактнойпрослойкеопорнойчастисшаровымсегментом

данную величину. Отмечено, что PK1 P и τK1 P уточняются с увеличением количества элементов, PK1 P сходится быстрее, сходимость τK1 P менее существенна ввиду малости величины. На большей доле

поверхности прослойки отмечено малое изменение величин напряжений σϕ . У края прослойки колебания напряжений σϕ существенны.

С увеличением количества элементов разбиения в прослойке уточняется характер распределения напряжений.

Библиографический список

1.Александров В.М., Чебаков М.И. Введение в механику контактных взаимодействий. – Ростов н/Д: ЦВВР, 2007. – 114 с.

2.Контактные задачи теории упругости для неоднородных сред / С.М. Айзикович [и др.]. – М.: Физматлит, 2006. – 237 с.

3.Богданов Г.И., Ткаченко С.С., Шульман С.А. Опорные части мостов: учеб. пособие для студентов вузов. / С.-Петерб. гос. ун-т путей сообщения. – СПб., 2006. – Ч. 1. – 32 с.

4.Горячева И.Г. Механика фрикционного взаимодействия. – М.:

Наука, 2001. – 479 с.

5.Малинин Н.Н. Прикладная теория пластичности и ползучести: учебник для студентов вузов. – изд. 2-е, перераб. и доп. – М.: Машино-

строение, 1975. – 400 с.

6.Механика контактных взаимодействий / под ред. И.И. Воровича, В.М. Александрова. – М.: Наука, 1966. – 708 с.

7.Тимошенко С.П., Гудьер Дж. Теория упругости. – М.: Наука, 1979. – 560с.

References

1.Aleksandrov V.M., Chebakov M.I. Introduction to contact mechanics [Vvedenie v mekhaniku kontaktnykh vzaimodeystviy]. Rostov-na-Donu, Publ. OOO «TsVVR», 2007, 114 p.

2.Ayzikovich S.M., Aleksandrov V.M., Belokon A.V., Krenev L.I., Trubchik I.S. Contact of a problem of the theory of elasticity for nonuniform environments [Kontaktnye zadachi teorii uprugosti dlya neodnorodnykh sred]. Moscow: Fizmatlit, 2006, 237 p.

41

А.А. Каменских

3.Bogdanov G.I., Tkachenko S.S., Shulman S.A. Basic parts of bridges. P.1 [Opornye chasti mostov. Ch. 1]. St. Petersburg: Peterburgskiy Gos. Univ. putey soobshcheniya, 2006, P. 32.

4.Goryacheva I.G. Mechanics of frictional interaction [Mekhanika friktsionnogo vzaimodeystviya]. Moscow: Nauka, 2001, 479 p.

5.Malinin N.N. The applied theory of plasticity and creep [Prikladnaya teoriya plastichnosti i polzuchesti]. Moscow: Mashinostroenie, 1975, 400 p.

6.Mechanics of contact interactions [Mekhanika kontaktnykh vzaimodeystviy]. Moscow: Nauka, 1966, 708 p.

7.Timoshenko S.P., Guder Dzh. Theory of Elasticity [Teoriya uprugosti]: Transl. from eng. Under. ed. Shapiro G.S. Moscow: Nauka, 1979, 560 p.

Об авторах

Каменских Анна Александровна (Пермь, Россия) – аспирант кафедры вычислительной математики и механики Пермского национального исследовательского политехнического университета (614990,

г. Пермь, Комсомольский пр., 29, e-mail: anna_kamenskih@ mail.ru).

About the authors

Anna Kamenskikh (Perm, Russian Federation) – engineer of the Department of Computational Mathematics and Mechanics State National Research Polytechnical University of Perm (614990, 29, Komsomolsky prospect, Perm, Russian Federation, e-mail: anna_kamenskih@mail.ru).

Получено 19.02.2012

42

В Е С Т Н И К П Н И П У

2012Деформативность металлов приМеханикаопределении остаточных напряжений в трубах№1

УДК 621.77, 539.3

Г.Л. Колмогоров, Е.В. Кузнецова, А.Ю. Полетаева

Пермский национальный исследовательский политехнический университет, Пермь, Россия

ДЕФОРМАТИВНОСТЬ МЕТАЛЛОВ ПРИ ОПРЕДЕЛЕНИИ ТЕХНОЛОГИЧЕСКИХ ОСТАТОЧНЫХ НАПРЯЖЕНИЙ В ТРУБАХ

В работе рассмотрены методы определения технологических остаточных напряжений, в том числе метод, основанный на энергетическом подходе, согласно которому уровень технологических остаточных напряжений находится в аналитической зависимости от механических свойств материала, параметров технологии, геометрии трубной заготовки и деформативности материала. Представлена методика определения комплексного параметра деформативности для случая, когда экспериментально определены окружные остаточные напряжения на внешней поверхности трубной заготовки.

Ключевые слова: остаточные напряжения, металлы, стали, деформативность, степень пластической деформации, волочение труб, технологические параметры.

G.L. Kolmogorov, E.V. Kuznetsova, A.J. Poletaeva

State National Research Polytechnical University of Perm, Perm,

Russian Federation

DEFORMABILITY OF METALS AT DETERMINATION OF TECHNOLOGICAL RESIDUAL STRESSES IN PIPES

The methods of determination of technological residual stresses tensions are considered in this work, including based on power approach, including of technological residual stresses in analytical dependence on mechanical properties of material, parameters of technology, geometry of pipe purveyance and deformability material. The method of determination of complex parameter of deformability is presented, for a case, when circuitous remaining tensions are experimentally certain on the external surface of pipe procurement.

Keywords: residual stresses, metals, steel, deformability, degree of plastic deformation, dragging of pipes, technological parameters.

Определение технологических остаточных напряжений в металлоизделиях является актуальной и весьма сложной задачей.

Экспериментальные методики разнообразны и широко используются, однако в основном это дискретные табличные данные, не имеющие функциональной зависимости от механических характери-

43

Г.Л. Колмогоров, Е.В. Кузнецова, А.Ю. Полетаева

стик материалов и технологических параметров процесса изготовления. В основе теоретических методов определения остаточных напряжений теорема о разгрузке (Генке). Однако высокая степень пластической деформации при обработке металлов давлением ограничивает ее применение, так как решения, основанные на этой теореме, применимы для малых упруго-пластических деформаций.

В работе [1] представлена расчетно-теоретическая методика, в основу которой положен энергетический подход, где в аналитическом виде определены окружные σθ, осевые σz и радиальные σr – оста-

точные напряжения в трубных изделиях. Согласно этой методике остаточные напряжения можно определить по всему объему трубной заготовки. Максимальные значения принимают растягивающие окружные и осевые остаточные напряжения на внешней поверхности трубы:

σ max =a R2

__

(1)

(1R) ,

θ

0 1

 

 

__

σz max =a0µR12 (1R) .

где R = R2 R1 ; R1 , R2 – внешний и внутренний радиусы трубы; µ – коэффициент Пуассона; a0 – параметр, зависящий от основных механи-

ческих характеристик материала, степени пластической деформации и геометрии заготовки и определяющийся следующим образом:

 

 

*

 

 

mсрn

 

 

σs0

 

ψ

60εср 1+

 

 

 

 

,

 

a =

(n+1)

(2)

 

 

 

 

 

 

 

 

0

R12

 

 

(1−µ2 )B

 

 

 

 

 

где σs0 – предел текучести материала; εср – средняя по сечению трубы

степень пластической деформации;

(

 

4

)

 

 

2 18

 

(

 

 

2

)

;

 

B

=7 1+

R

 

+22

R

R

 

1+

R

 

m, n – эмпирические коэффициенты, характеризующие деформационное упрочнение; ψ* комплексный параметр деформативности мате-

риала.

Диапазоны параметра деформативности определены и известны для канатной проволоки [2], композиционных порошковых материалов, а также для некоторых сплавов и сталей, однако этот параметр содержит не только физико-механическую составляющую, но и зависит

44

Деформативность металлов при определении остаточных напряжений в трубах

от вида технологического процесса и требует дополнительных экспериментальных исследований [3].

В работе предлагается определение параметра деформативности материала в аналитическом виде с привлечением известных экспериментальных исследований остаточных напряжений на поверхности труб и возможностью дальнейшего доопределения технологических остаточных напряжений по всему объему заготовки. При этом возможно выявление влияния параметров технологии и свойств на уровень и распределение остаточных напряжений.

Пусть экспериментально определены окружные остаточные напряжения на поверхности трубной заготовки:

σθ r=R1 *θ ,

тогда в соответствии с уравнениями (1) и (2) можно записать

*

 

mεсрn

 

 

 

 

 

 

 

ψ

60εср 1+

 

 

 

(

 

 

 

 

 

 

(n +1)

)

 

(3)

 

 

 

 

 

 

σ0

 

r=R1 s0

 

 

 

 

 

1R

 

.

 

 

(1−µ2 )

 

 

 

 

 

B

 

 

 

 

 

 

 

 

Тогда комплексный параметр деформативности в случае, когда известны окружные остаточные напряжения на внешней поверхности трубной заготовки, можно определить как

 

 

 

 

 

 

 

 

 

__

 

 

 

 

 

ψ*

 

* =

 

 

 

σ*θ

2 (1−µ2 ) B

 

 

 

.

(4)

 

 

 

 

 

 

 

 

n

 

 

 

σθθ

 

 

 

 

mε

 

 

 

 

r=R

 

 

 

 

 

ср

 

 

 

 

(1R)2

 

σ2s0

 

 

1

 

60εср 1+

 

 

 

 

 

 

 

(

 

)

 

 

 

 

 

 

 

 

 

 

n+1

 

 

 

 

На рис. 1 представлены экспериментальные значения тангенци-

альных σt (окружных

σ*θ ) остаточных напряжений,

распределенных

по сечению трубы после однократного и многократного волочения [4]. В этой же работе определены основные механические характеристики для стали 10, 20, 30ХГСА (рис.2).

Была проведена аппроксимация данных, представленных на рис. 1 и 2, и найдены искомые значения основных механических характеристик, входящих в соотношение (1), (2), а также остаточные напряжения на поверхности труб для различных степеней деформирования и видов волочения. Путем подставления полученных данных в вы-

45

Г.Л. Колмогоров, Е.В. Кузнецова, А.Ю. Полетаева

ражение (4) были рассчитаны параметры деформативности в трубных изделиях для стали 10, 20, 30ХГСА (рис. 2).

а

б

в

г

 

 

 

 

I

а

б

II

в

г

 

 

 

 

Рис. 1. Распределение окружных остаточных напряжений по толщине стенки труб после однократного (I) безоправочного волочения с различной степенью деформации

ε: (а) 7,99 %, (б) 11,73 %, (в) 16,2 %, (г) 20,6 % и многократного (II) безоправочного волочения со степенью деформации ε: (а) 11,3 %, (б) 16,3 %, (в) 21 %, (г) 24,6 %

Рис. 2. Механические свойства труб после волочения

46

Деформативность металлов при определении остаточных напряжений в трубах

На рис. 3 Представлены расчетные значения комплексного параметра деформативности ψ* в зависимости от степени пластического деформирования в трубах из сталей 10, 20 и 30ХГСА после однократного и многократного безоправочного волочения.

а

б

Рис. 3. Зависимость приведенного параметра деформативности ψ* от степени пластического деформирования в трубах из различных конструкционных сталей после (а) однократного, (б) многократного безоправочного волочения

Результаты расчетов показали, что уровень коэффициента деформативности для указанных сталей находится в диапазоне ранее определенных для других конструкционных материалов. Из рис. 3 видно, что чем выше механические свойства стали, тем меньше уровень деформативности. Это объясняется обратной зависимостью в выражении

(4). При увеличении степени деформации параметр деформативности тоже возрастает, при этом чем ниже прочностные свойства стали, тем больше значения ψ*.

В работе [5] предложена методика определения значимых компонент тензора остаточных напряжений в трубах после пластического деформирования, распределенных по объему заготовки в случае, когда значения окружных остаточных напряжений на поверхности известны. Расчетные формулы имеют вид

 

 

 

 

 

σ

r

=−

σ*θ

(R1 r )(r R2 )

,

 

 

 

 

 

 

 

 

 

 

 

 

R2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1R)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

θ (

 

 

1 )(

 

1

 

 

 

 

 

 

(

 

 

 

1

 

2 )

 

 

 

 

 

 

 

 

 

 

2 )

 

 

 

 

 

 

 

 

 

 

 

σθ =

σ*

 

r R

 

r R

 

+r

 

 

2r R

R

 

,

(5)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R2 (1R)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

θ

 

 

 

(

 

1 )(

1

2 )

 

 

 

 

 

 

(

 

 

1

2 )

 

σ

 

=

σ*

µ

2

 

r R

 

r R

 

 

+r

 

2r R

R

 

,

z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R2 (1R)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

где r – текущий радиус.

47

Г.Л. Колмогоров, Е.В. Кузнецова, А.Ю. Полетаева

Таким образом, разработанная методика позволяет оценивать уровень деформативности, который определяет физико-механические свойства материала, а также выявляет влияние технологических параметров на значения и распределения остаточных напряжений с учетом экспериментальных данных после волочения труб для различных металлов и сталей.

Библиографический список

1.Кузнецова Е.В. Остаточные напряжения и технологическая прочность осесимметричных металлоизделий, полученных пластическим деформированием: дис. … канд. техн. наук. – Пермь, 2002. – 152 с.

2.Фогель Л.М. Повышение свойств арматурной проволоки с четырехсторонним профилем на основе совершенствования режимов волочения и профилирования: дис. … канд. техн. наук. – Магнитогорск, 1991. – 147 с.

3.Пат. № 2276779 РФ Способ определения показателя деформативности материала / Колмогоров Г.Л., Мельникова Т.Е., Кузнецова Е.В.; заявитель и патентообладатель ПГТУ, № 2004/28707; заявл. 27.09.2004, Бюл. № 14.

4.Соколов И.А, Уральский В.И. Остаточные напряжения и качество металлопродукции. – М.: Металлургия, 1981. – 96 с.

5.Пат. № 2366912 РФ Способ определения остаточных напряжений / Колмогоров Г.Л., Кузнецова Е.В.; заявитель и патентообладатель ПГТУ, № 2008111436/28; заявл. 23.03.2008, Бюл. № 25.

References

1.Kuznetsova E.V. Residual stresses and technological strength of the axisymmetric metal obtained by plastic deformation: dis. work [Ostatochnye napryazheniya i tekhnologicheskaya prochnost osesimmetrichnykh metalloizdeliy, poluchennykh plasticheskim deformirovaniem: avtoref. dis.]. Perm: PGTU, 2002, 152 р.

2.Fogel L.M. Improving the properties of reinforcing wire with foursided profile by improving themode of drawing and profiling: dis. work [Povyshenie svoystv armaturnoy provoloki s chetyrekhstoronnim profilem na osnove sovershenstvovaniya rezhimov volocheniya i profilirovaniya: avtoref. dis.]. Magnitogorsk, 1991, 147 р.

48

Деформативность металлов при определении остаточных напряжений в трубах

3.Patent na izobretenie № 2276779 Russian Federation po tematike «Sposob opredeleniya pokazatelya deformativnosti materiala» [Method for determining the deformability index of the material], zayavka

№2004128707 ot 27.09.2004, Byul.№14 ot 20.05.2006, patentoobladatel i zayavitel Perm.GTU, avtory Kolmogorov G.L., Melnikova T.E., Kuznetsova E.V.

4.Sokolov I.A., Uralskiy V.I. Residual stress and quality of metal [Ostatochnye napryazheniya i kachestvo metalloproduktsii]. Moscow: Metallurgiya, 1981, 96 p.

5.Patent na izobretenie № 2366912 Russian Federation po tematike «Sposob opredeleniya ostatochnykh napryazheniy» [The method for determining residual stress] zayavka №2008111436/28 ot 23.03.2008, Byul.№25 ot 10.09.2009, patentoobladatel i zayavitel Perm.GTU, avtory Kolmogorov G.L., Kuznetsova E.V.

Об авторах

Колмогоров Герман Леонидович (Пермь, Россия) – доктор тех-

нических наук, профессор, заведующий кафедрой динамики и прочности машин Пермского национального исследовательского политехнического университета (614990, г. Пермь, Комсомольский пр., 29, e-mail: dpm@pstu).

Кузнецова Елена Владимировна (Пермь, Россия) – кандидат тех-

нических наук, доцент кафедры динамики и прочности машин Пермского национального исследовательского политехнического университета

(614990, г. Пермь, Комсомольский пр., 29, e-mail: mellen75@mail.ru).

Полетаева Алла Юрьевна (Пермь, Россия) – студентка кафедры динамики и прочности машин Пермского национального исследовательского политехнического университета (614990, г. Пермь, Комсо-

мольский пр., 29, e-mail: Alla281@ya.ru).

About the authors

Kolmogorov German Leonidovich (Perm, Russian Federation) – Doctor of Technical Sciences, Head of Department of Dynamic and strength of mechanism, State National Research Polytechnical University of Perm (614990, 29, Komsomolsky prospect, Perm, Russian Federation, e-mail: dpm@pstu).

49

Г.Л. Колмогоров, Е.В. Кузнецова, А.Ю. Полетаева

Kuznetcova Elena Vladimirivna (Perm, Russian Federation) – Ph.D. in Technical Sciences, Associate professor, Deputy dean, Department of Dynamic and strength of mechanism, State National Research Polytechnical University of Perm (614990, 29, Komsomolsky prospect, Perm, Russian Federation, e-mail: mellen75@mail.ru).

Poletaeva Alla Yurevna (Perm, Russian Federation) – Student of Department of Dynamic and strength of mechanism, State National Research Polytechnical University of Perm (614990, 29, Komsomolsky prospect, Perm, Russian Federation, e-mail: Alla281@ya.ru).

Получено 10.02.2012

50

Соседние файлы в папке книги