Скачиваний:
7
Добавлен:
24.05.2023
Размер:
324.77 Кб
Скачать

МИНИСТЕРСТВО ЦИФРОВОГО РАЗВИТИЯ,

СВЯЗИ И МАССОВЫХ КОММУНИКАЦИЙ РОССИЙСКОЙ ФЕДЕРАЦИИ

(МИНЦИФРЫ РОССИИ)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕЛЕКОММУНИКАЦИЙ ИМ. ПРОФ. М.А. БОНЧ-БРУЕВИЧА»

(СПБГУТ)

Кафедра радиосистем и обработки сигналов (РОС)

КУРСОВАЯ РАБОТА

по дисциплине «Основы радиолокации и радионавигации»

Тема работы:

Радиолокационные и радионавигационные измерители угловых координат

Выполнил:

студент 3 курса

группы РТ-01

ХХХХХХХХ

Вариант: №433

Проверил: Поддубный С.С.

Оценка:______________

Подпись______________

Дата:______________

Санкт-Петербург

2022

АМПЛИТУДНЫЙ СУММАРНО-РАЗНОСТНЫЙ РАДИОЛОКАТОР Оглавление

0. Типовое задание. 3

1. Выбор структурных схем 4

2. Расчет длины волны и параметров ФАР 8

3. Расчет параметров сигнала 8

4. Выбор параметров устройств обработки сигналов 9

5. Расчет погрешностей 10

6. Расчет энергетических параметров 14

7. Расчет вспомогательных параметров 15

8. Заключение 16

0. Типовое задание.

1. Составить и описать структурные схемы РЛ и АК с цифровым устройством, вводимым для уменьшения аппаратурной погрешности ΔθА.

2. Определить параметры антенны; зондирующего сигнала; трактов формирования и обработки сигналов; устройства уменьшения ΔθА и выдаваемого АК двоичного кода рассогласования по азимуту. Рассчитать мощности передатчика РЛ. Считать, что доплеровский сдвиг частоты компенсируется с помощью АПЧ.

3. Выбрать дальность R0, для которой производится оптимизация следящей системы АК, используя оценки σΣ при R0 = RП и R0 = RМАХ. Построить зависимость относительной полной погрешности σП/φ от R/Rmax для этих вариантов.

4. Разработать технические требования к основным элементам АК, включая передатчик, достаточные для дальнейшего проектирования.

Исходные данные

Вариант 433

Параметры и условия

Значения

ЭПР цели

10

Размер цели

12

Скорость цели

290

Максимальная высота полёта

25

Разрешающая способность по дальности

60

Разрешающая способность по азимуту

2.4

Диаметр ФАР

0.29

Погрешность измерения азимута

10

Потеря энергии сигнала по высокой частоте

8

Потеря энергии сигнала при обработке

5

Неидентичность фазового сдвига в приемных трактах на высокой частоте

12

Неидентичность фазового сдвига в приемных трактах на промежуточной частоте

35

Неидентичность коэффициентов передачи до суммарно-разностного моста

0.96

Протяжённость зоны осадков

5

Интенсивность осадков

0.5

1. Выбор структурных схем

Структурная схема РЛ. В соответствии с поставленными перед РЛ общими задачами он должен иметь канал обнаружения движущихся целей (ОДЦ) и четыре измерительных канала, служащих для определения азимута, угла места, скорости и дальности цели. Наличие ОДЦ и необходимость измерения скорости требуют применения когерентного зондирующего сигнала. Последний, как указывалось, должен быть импульсным. Упрощенная структурная схема такого РД представлена на рис. 1.

Рис. 1

Источником когерентных колебаний служит синтезатор частот СЧ. Основой СЧ является когерентный генератор частоты , из которой путем дробно-рациональных преобразований формируются частоты всех сигналов, необходимых для работы РЛ. Передатчик Прд представляет собой умножитель частоты выдаваемого СЧ сигнала ( - несущая частота) в k раз с последующим усилителем мощности, периодически отпирающимся при поступлении с СЧ синхронизирующих импульсов с частотой повторения (синхросигнал ОС). Полученный в Прд зондирующий сигнал через переключатель прием-передача ППП направляется к антенной системе АС.

Отличительной особенностью амплитудного суммарно-разностного радиолокатора является использование антенной системы (АС) с амплитудным угловым датчиком. Такая АС может состоять из приемно-передающей фазированной антенной решетки ФАР, включающей диаграммообразующую схему, и суммарно-разностного преобразователя СРП, подобного показанному на рис. 3. В режиме приема АС формирует суммарный сигнал и два разностных сигнала и , несущих информацию о углах рассогласования в азимутальной и угломестной плоскостях. При пеленгации в одной плоскости диаграмма направленности ФАР имеет вид, показанный на рис. 2. Равносигнальное направление РСН, от которого отсчитывается угол рассогласования , проходит через точку пересечения диаграмм и , максимумы которых сдвинуты на угол относительно РСН.

Рис. 2.

Структурная схема азимутального канала. Входящий в состав РЛ измеритель угловых координат должен определять азимут и угол места цели и содержит в связи с этим два идентичных по схеме канала: канал азимута и угломестный канал (УК).

Структурная схема азимутального канала показана на рис. 2. Предусмотрены два режима работы этого канала: рабочий, когда измеряется угол , и калибровочный, когда корректируются неидентичности трактов обработки сигналов.

Рис. 3.

В рабочем режиме коммутатор К соединяет выход углового дискриминатора с устройством управления диаграммой направленности УУДН. Кроме того, отключается генератор пилот-сигнала ГПС.

Угловой дискриминатор содержит два ПУТ и фазовый детектор ФД. Сигнал ФД преобразуется в цифровую форму с помощью аналого-цифрового преобразователя АЦП. Устройство мгновенной автоматической регулировки усиления МАРУ служит для нормировки сигналов, с помощью которой уменьшается влияние амплитудных флуктуации входных сигналов на точность измерения угловых координат.

В идеальном амплитудном суммарно-разностном радиопеленгаторе (т.е. в радиопеленгаторе с идентичными характеристиками трактов приема и усиления сигналов) суммарный и разностный сигналы синфазны или противофазны (в зависимости от знака угла ). Такой же фазовый сдвиг имеют и сигналы и подаваемые на ФД. Поэтому в отличие от фазового суммарно-разностного радиопеленгатора дополнительный фазовращатель на в разностном канале здесь не требуется.

Информация о угле рассогласования содержится в амплитудах принимаемых по диаграммам и сигналов (см. рис. 3.1), которые при идентичных диаграммах, т.е. при , и малых углах имеют вид

; .

Разложение функций в степенной ряд дает

; ,

где - нормированная крутизна ДНА на РСН.

При одинаковых коэффициентах усиления ПУТ- и ПУТ- , т.е. при , суммарный и разностный сигналы на входе ФД будут

;

.

Таким образом в идеальном амплитудном суммарно-разностном моноимпульсном радиопеленгаторе на выходе углового дискриминатора (на выходе ФД) действует сигнал ошибки

(1)

где - коэффициент передачи фазового детектора, а наличие члена в знаменателе есть следствие работы схемы МАРУ, уменьшающей коэффициенты усиления ПУТ- и ПУТ- пропорционально значению .

Сигнал ошибки подается (в данном случае в цифровой форме) на устройство управления диаграммами направленности УУДН, вызывая такой поворот ДНА, при котором стремится к нулю.

Как следует из сказанного, после суммарно-разностного преобразования информация о угле содержится в амплитуде и фазе разностного сигнала, а сигнал используется как опорный при определении фазы сигнала .

Структурная схема устройства коррекции. В реальных амплитудных суммарно-разностных радиопеленгаторах тракты обработки сигналов обычно неидентичны, что приводит к появлению аппаратурной погрешности при определении угловых координат цели. Наибольшее влияние на аппаратурную погрешность оказывают:

- - неидентичность фазовых сдвигов сигналов и на высокой частоте (до СРП);

- - неидентичность коэффициентов передачи трактов прохождения этих сигналов до СРП;

- - неидентичность фазовых сдвигов суммарного и разностного сигналов в трактах усиления на промежуточной частоте (в ПУТ).

Сигнал на выходе углового дискриминатора (1) при неидентичных трактах приема и усиления сигналов принимает вид

. (2)

При нахождении цели на равносигнальном направлении РСН, когда , сигнал не равен нулю и ДНА продолжает свое движение до тех пор, пока за счет возникающего приращения амплитуд и не будет достигнуто условие . Как следует из векторной диаграммы, показанной на рис. 3.3,а, когда цель находится на РСН, разностный сигнал на выходе СРП не равен нулю и не ортогонален сигналу . В усилительном тракте к углу между и добавляется фазовый сдвиг и сигналы и оказываются сдвинутыми по фазе на угол υ= (рис. 3.3,б). Так как в общем случае υ , то и сигнал ошибки также не равен нулю. Движение ДНА будет продолжаться, пока не будет выполнено условие , что в рассматриваемой ситуации возможно только при υ .

Рис. 4

Таким образом при неидентичных трактах радиопеленгатора РСН в установившемся состоянии системы слежения за углом , когда , отличается от направления на цель на некоторый угол , который и является аппаратурной погрешностью радиопеленгатора. Приравнивая нулю значение в соотношении (2), можно получить формулу для расчета аппаратурной погрешности амплитудного суммарно-разностного радиопеленгатора:

.

Для уменьшения аппаратурной погрешности можно использовать также коррекцию неидентичностей трактов приема и усиления сигналов. На рис. 3 показан наиболее простой вариант устройства коррекции, основанный на введении дополнительного фазового сдвига в сигнал, усиливаемый в ПУТ- . Целесообразность применения этого варианта коррекции обоснована в § 2.1 данного пособия.

Соседние файлы в папке курсач