
- •Закон сохранения массы.
- •Закон постоянства состава
- •1) Состав оксидов азота (в процентах по массе) выражается следующими числами:
- •Закон эквивалентов
- •Закон Авогадро
- •Стандартная энтальпия образования (стандартная теплота образования)
- •Температурная зависимость теплового эффекта (энтальпии) реакции
- •Внутренняя энергия
- •Идеальные газы
- •Внутренняя энергия вещества, тела, системы
- •Энтропия
- •Потенциал Гиббса
- •Изопроцессы
- •Следствия из закона Гесса
- •Скорость химической реакции
- •Правило Вант-Гоффа
- •Закон действующих масс в химической термодинамике
- •Влияние давления
- •Концентрация растворов
- •Массовая доля (также называют процентной концентрацией)
- •Нормальная концентрация (мольная концентрация эквивалента)
- •Второй закон Рауля
- •Криоскопия
- •Растворы электролитов и неэлектролитов
- •Значения pH в растворах различной кислотности
- •Закон разбавления Оствальда
- •Гидролиз органических веществ
- •Теории кислот и оснований
- •Эволюция представлений о кислотно-основных взаимодействиях
- •Теория электролитической диссоциации Аррениуса-Оствальда
- •Протонная теория Брёнстеда-Лоури
- •Электронная теория Льюиса
- •Общая теория Усановича
- •Окисление
- •Восстановление
- •Виды окислительно-восстановительных реакций
- •Окисление, восстановление
- •Электролиз
- •Гальванические элементы
- •Электрические аккумуляторы
- •Топливные элементы
- •Коррозия металлов
- •Химическая коррозия
- •Виды коррозии
- •Борьба с коррозией
- •Система холодного цинкования
- •Газотермическое напыление
- •Цинкование
Значения pH в растворах различной кислотности
Вопреки распространённому мнению, pH может изменяться не только в интервале от 0 до 14, а может и выходить за эти пределы. Например, при концентрации ионов водорода [H+] = 10−15 моль /л, pH = 15, при концентрации ионов гидроксида 10 моль /л pOH = −1.
|
Так как в кислых растворах [H+] > 10−7, то pH кислых растворов pH < 7, аналогично pH щелочных растворов pH > 7, pH нейтральных растворов равен 7. При более высоких температурах константа электролитической диссоциации воды повышается, соответственно увеличивается ионное произведение воды, поэтому нейтральной оказывается pH < 7 (что соответствует одновременно возросшим концентрациям как H+, так и OH−); при понижении температуры, напротив, нейтральная pH возрастает.
Закон разбавления Оствальда
Материал из Википедии — свободной энциклопедии
Закон разбавления Оствальда — соотношение, выражающее зависимость эквивалентной электропроводности разбавленного раствора бинарного слабого электролита от концентрации раствора:
Здесь К — константа диссоциации электролита, с — концентрация, λ и λ∞ — значения эквивалентной электропроводности соответственно при концентрации с и при бесконечном разбавлении. Соотношение является следствием закона действующих масс и равенства
где α — степень диссоциации.
Закон разбавления Оствальда выведен В.Оствальдом в 1888 и им же подтвержден опытным путём. Экспериментальное установление правильности закона разбавления Оствальда имело большое значение для обоснования теории электролитической диссоциации.
Гидролиз
Гидро́лиз (от др.-греч. ὕδωρ — вода и λύσις — разложение) — один из видов химических реакций сольволиза, где при взаимодействии веществ с водой происходит разложение исходного вещества с образованием новых соединений. Механизм гидролиза соединений различных классов: соли, углеводы, белки, сложные эфиры, жиры и др. имеет существенные различия.
[править]Гидролиз солей
Гидролиз солей — разновидность реакций гидролиза, обусловленного протеканием реакций ионного обмена в растворах (преимущественно, водных) растворимых солей-электролитов. Движущей силой процесса является взаимодействие ионов с водой, приводящее к образованию слабого электролита в ионном или (реже) молекулярном виде («связывание ионов»).
Различают обратимый и необратимый гидролиз солей[1]:
1. Гидролиз соли слабой кислоты и сильного основания (гидролиз по аниону):
CO32− + H2O = HCO3− + OH− Na2CO3 + Н2О = NaHCO3 + NaOH (раствор имеет слабощелочную среду, реакция протекает обратимо, гидролиз по второй ступени протекает в ничтожной степени)
2. Гидролиз соли сильной кислоты и слабого основания (гидролиз по катиону):
Cu2+ + Н2О = CuOH+ + Н+ CuCl2 + Н2О = CuOHCl + HCl (раствор имеет слабокислую среду, реакция протекает обратимо, гидролиз по второй ступени протекает в ничтожной степени)
3. Гидролиз соли слабой кислоты и слабого основания:
2Al3+ + 3S2− + 6Н2О = 2Al(OH)3(осадок) + ЗН2S(газ) Al2S3 + 6H2O = 2Al(OH)3 + 3H2S (равновесие смещено в сторону продуктов, гидролиз протекает практически полностью, так как оба продукта реакции уходят из зоны реакции в виде осадка или газа).
Соль сильной кислоты и сильного основания не подвергается гидролизу, и раствор нейтрален. См. также Электролитическая диссоциация.
Степень гидролиза
Под степенью гидролиза подразумевается отношение части соли, подвергающейся гидролизу, к общей концентрации её ионов в растворе. Обозначается α (или hгидр); α = (cгидр/cобщ)·100 % где cгидр — число молей гидролизованной соли, cобщ — общее число молей растворённой соли. Степень гидролиза соли тем выше, чем слабее кислота или основание, её образующие.
Является количественной характеристикой гидролиза.
Константа гидролиза
Константа гидролиза — константа равновесия гидролитической реакции.
Выведем уравнение константы гидролиза соли, образованной слабой кислотой и сильным основанием:
Уравнение константы равновесия для данной реакции будет иметь вид:
или
Так
как концентрация молекул воды в растворе
постоянна, то произведение двух
постоянных можно
заменить одной новой — константой
гидролиза:
Численное
значение константы гидролиза получим,
используя ионное
произведение воды и константу
диссоциации азотистой
кислоты
:
подставим в уравнение константы гидролиза равна:
В общем случае для соли, образованной слабой кислотой и сильным основанием:
,
где Ka —
константа диссоциации слабой кислоты,
образующейся при гидролизе
для соли, образованной сильной кислотой и слабым основанием:
,
где Kb —
константа диссоциации слабого основания,
образующегося при гидролизе
для соли, образованной слабой кислотой и слабым основанием: