Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ФТИ-12_заочное / Word / Контрольная работа / Рефераты / Способы кодирования информации1.doc
Скачиваний:
18
Добавлен:
10.02.2015
Размер:
284.16 Кб
Скачать

5. Как измеряется количество информации в компьютере

В информатике принято рассматривать последовательности битов длиной 8. Такая последовательность называется байтом и является следующей за битом единицей измерения количества информации в компьютере.

С помощью одного байта можно записывать двоичные коды 28 = 256 чисел от 0 до 255. Байты объединяются в последовательности длиной 1024 (=210). Такая последовательность называется килобайтом (Кбайт) и также используется для измерения количества информации в компьютере. Обычно приставка «кило-» обозначает, что берется 1000 единиц измерения. Например, 1 килограмм равен 1000 граммам, 1 километр равен 1000 метрам. Ближайшее к тысяче число, являющееся степенью числа 2, есть 210=1024. Именно 1024 байта и называется килобайтом (Кбайт).

Последовательность из 1024 Кбайтов называется мегабайтом (Мбайт), из 1024 Мбайтов — гигабайтом (Гбайт), из 1024 Гбайтов — терабайтом (Тбайт).

Бит, байт, килобайт, мегабайт — основные единицы измерения количества информации в компьютере.

1 байт

=

8

битов

1 Кбайт

=

1024

байта

1 Мбайт

=

1024

Кбайта

1 Гбайт

=

1024

Мбайта

Итак, с помощью двоичных кодов цифры и их последовательности (числа) становятся понятными компьютеру. Процесс преобразования информации представляется в виде схемы:

Информация

Числа

Двоичные коды

Эта схема, читаемая слева направо, отображает способ поступления информации извне в компьютер. Преобразование входной информации в двоичные коды выполняют устройства ввода информации. Эта же схема, читаемая справа налево, отображает способ представления результатов работы компьютера — выходной информации. Преобразование двоичных кодов результирующих данных в выходную информацию выполняют устройства вывода информации.

Память компьютера содержит информацию только в двоичном виде (в виде 0 и 1), и ЦП выполняет действия только с данными, представленными в двоичной системе.

6. Шестнадцатеричная система счисления

Ш

an·16n+an-1·16n-1+···+ a1·161+a0·160 (3)

естнадцатеричная система счисления — это система счисления, в которой основанием является число 16. Любое целое положительное число представляется в этой системе с помощью степеней числа 16 в виде

Шестнадцатеричной записью целого положительного числа является последовательность коэффициентов ап an-1 ... al a0 из представления (3).

Например:

31210=25610+4810+810=1·162+3·161+8·160=13816.

Для того чтобы представление числа в шестнадцатеричной системе было однозначным, значения коэффициентов при степенях числа шестнадцать должны быть целыми числами от 0 до 15. Если значение коэффициента взять равным 16, то умножение какой-то степени числа 16 на этот коэффициент дает следующую степень числа 16: 16·16n=1·16n+1; 25·16n=(16+9) ·16n=1·16n+1+9·16n.

В качестве коэффициентов для записи чисел в шестнадцатеричной системе берутся шестнадцать символов: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, А, В, С, D, Е, F. Они называются шестнадцатеричными цифрами. Десятичные цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 сохраняют свои значения и в шестнадцатеричной системе: 010=016, 110=116, 910=916. Символы А, В, С, D, Е, F соответствуют десятичным числам от 10 до 15:

1010

=

A

1310

=

D

1110

=

B

1410

=

E

1210

=

C

1510

=

F

Рассмотрим примеры перехода от записи чисел в десятичной системе к их записи в шестнадцатеричной системе:

2710=1610+1110=1·161+1110·160=1·161+B·160=1B16.

Введение шестнадцатеричных цифр А, В, С, D, Е, F является необходимым, т.к. при использовании в качестве коэффициентов в записи шестнадцатеричных чисел 10, 11,...15 появляется неоднозначность в их прочтении. Следующий пример демонстрирует, как в таком случае можно прочесть одно число тремя различными способами:

11016

=

1·162

+

1

·

161

+

0

·

160

=

27210

11016

=

11

·

161

+

0

·

160

=

17610

11016

=

1

·

161

+

10

·

160

=

2610

Использование шестнадцатеричных цифр приводит к однозначному прочтению чисел:

27210

=

11016

17610

=

B016

2610

=

1A16

Применение шестнадцатеричной системы счисления в информатике удобно в связи с тем, что содержимое одного байта можно записать двумя шестнадцатеричными цифрами. Действительно, для записи любой шестнадцатеричной цифры достаточно четырех битов. Максимальная шестнадцатеричная цифра F=1510 имеет двоичный код 1111. Один байт - это 8 битов, которые можно разделить на две части: четыре младших бита с номерами от 0 до 3 и четыре старших бита с номерами от 4 до 7.

Содержимое каждой части можно записать одной шестнадцатеричной цифрой, а содержимое байта — двумя: первая — 4 старших бита, вторая — 4 младших бита.

Таким образом, любое число от 0 до 255 (содержимое 1 байта) можно записать двумя шестнадцатеричными цифрами.