- •Н. Андреева
- •Глава 1
- •§ 1. Введение
- •3) Очевидно, автор подразумевает область, в которой удается производить измерения приборами ограниченной чувствительности.—Прим. Ред.
- •2) См. [38].— Прим. Ред.
- •II ресна я вода
- •2 Л. Беранек
- •Фиг. 4. График зависимости скорости звука в твердом теле от диаметра или ширины;
- •Образца.
- •Ф и г. Б. Зависимость скорости звука в сегнетовой соли от температуры.
- •§ 4. Решения обыкновенного волнового уравнения
- •§ 4. Решения обыкновенного волнового уравнения
- •Фиг. 9. График функции Нейманна норного порядка iVj (с) от псщественного аргумента л.
- •§ 4. Решения обыкновенного волнового уравнения
- •§ 4. Решения обыкновенного волнового уравнения
- •Фиг. 13. График зависимости фазового угла у удельного акустического сопротивления от кг.
- •§ 5. Затухание звука в воздухе
- •Фиг. 14. Номограмма для определения постоянной затухания, обусловленного молекулярным поглощением в воздухе [13, 14].
- •От температуры.
- •§ 5. Затухание звука в воздухе
- •Духе при частоте 17 —18 кгц и темпера- туре мен еду 15,5 и 29,4“ с [24j.
- •§ 5. Затухание звука в воздухе
- •Ф и г. 20. Зависимость коэффициента затухания от частоты при распространении плоской волны в трубах диаметром 19 мм из различных материалов.
- •Ф и г. 22. Затухание звука в пресной и морской воде.
- •Загрязнениями.
- •§ 7. Диффращия и рассеяние
- •§ 6 Затухание звука в воде
- •§ 7. Д11ффр акция и рассеяние
- •Градиента.
- •3 Л. Беранек
- •§ 8. Нелинейные явления в гав ах
- •§ 8. Нелинейные не ленин и газах
- •§ 8. Нелинейные явления в газах
- •Литература
- •§ 1. Введение
- •§ 2. Возмущение поля. Вызываемое шаром
- •Фиг. 32. График зависимости вещественной части r8 фактора возмущения Ys для сферы от 0, kr0 — 1, 2, 3, 4, 5, 6, 8, 10 [4].
- •1000 5000 Юооо 50000
- •§ 2. Возмущение поля, вызываемое шаром
- •§ 3. Возмущение поля, вызываемое цилиндром
- •R0 f, смхги
- •Фиг. 46. Зависимость от г0/ максимального отклонения, выра- женного в дб, звукового давления на расстоянии г от центра цилиндра радиуса г0, от его значения в невозмущенном поле.
- •§ 4. Возмущение поля, вызываемое круглым диском
- •§ 4. Возмущение поля, вызываемое круглым диском
- •Фиг. 47. Экспериментальная установка, при- мененная Примаковым с сотрудниками [6], для исследования звукового поля вокруг метал- лического диска, погруженного в воду.
- •Ф иг. 49. Искажение поля давлений позади круглого диска ддааметром 457 мм в функции от расстояния, взятого по пер- пендикуляру к оси диска.
- •Ф и г. 50. Искажение поля давлений позади круглого диска диаметром 457 мм. В функции от расстояния, взя- того по перпендикуляру к оси диска.
- •§ 5. Возмущение поля, вызываемое полу бесконечным плоским экраном
- •Фиг. 51. Полу бесконечный плоский жесткий экран в поле звуковой волны. Жирная линия—экран. Направление падающей плоской волны показано стрелками.
- •§ 6. Диффракция звука на человеческом теле
- •§ 7. Источники 8вука, пометценные в экранах конечных раэмеров
- •Фиг. 53. Типичный график отношения, выра- женного в дб, звукового давления на груди человека, обращенного лицом к источнику, к давлению в свободном поле.
- •§ 7. Источники звука, помещенные в экранах конечных
- •2) Этот вопрос был значительно ранее исследован Мясниковым [15].-Прим. Ред.
- •200 Юоо юооо
- •Глава 3
- •§ 1. Введение
- •Звуковое давление в какой-нибудь точке пространства;
- •Скорость частиц в какой-нибудь точке пространства;
- •Смещение частиц в какой-нибудь точке пространства;
- •Градиент звукового давления между двумя бесконечно близкими точками;
- •Изменение температуры в какой-вибудь точке пространства;
- •Сила звука в какой-нибудь точке пространства;
- •Увеличение статического давления вблизи отражающей поверхности.
- •§ 2. Калибровка методом взаимности
- •§ 2. Калибровка методом взаимности
- •§ 2. Калибровка методом вваимнооти
- •5 Л. Беранек
- •Фиг. 62. Эквивалентная схема обратимого преобразователя в замкнутой камере.
- •§ 2. Калибровка методом взаимности
- •§ 2. Калибровка методом взаимности
- •§ 2. Калибровка методом взаимности
- •§ 2. Калибровка методом взаимности
- •Фиг. 67. Схема прецизионного емкостного моста [13]»
- •Тивление 10 000 ом; 14—трансформатор; 15—конденсатор емкостью 1000 пф.
- •Фиг. 68. Типичная частотная характеристика емкости кон- денсаторного микрофона we 640аа |13].
- •§ 2. Калибровка методом взаимности
- •100 Юоо юооо
- •Ф и г. 69. Фактор диффракдии цилиндрических камер [13].
- •100 Юоо юооо
- •Фиг. 70. Фактор диффракдии цилиндрических камер [13].
- •Фиг. 71. Фактор диффракции камеры Ди Маттия и Винера [13] объемом 12,7 см8 при заполнении воздухом.
- •§ 2. Калибровка методом взаимности
- •Фиг. 72. Поправка на изменение эффективного объема полости вслед- ствие теплопередачи на стенках.
- •Фиг. 74. Фактор диффракции высокочастотной камеры, сконструиро- ванной Ди Маттия и Винером [13].
- •§ 3. Измерения звукового поля (3.60)
- •§ 3. Измерения звукового поля
- •§ 3. Измерения звукового поля
- •Фиг. 75. Вихревое движение воздуха вблизи диска Рэлея.
- •Ординаты равны 10 lg (Ьй8м/Ьрассч), где ьи0м—фактический момент, действу-, кнций на диск; а Ьрассч—вычисленный по формуле Кинга (4.61) или, в грубом' приближении, по формуле (4.65), I
- •Фиг. 77. График влияния толщины диска Рэлея на вращающий момент. Ординаты дают отношение фактического момента к мо- менту, рассчитанному для бесконечно тонкого дисна.
- •0 Интересные исследования диска Рэлея были произведены Егоровым, изготовившим эталонные наборы дисков, нитей и калибровочных грузов [50].— Прим. Ред.
- •§ I. Первичные источники гоука
- •§ 4. Первичные источники звука
- •Фиг. 79. Термофон с фольгой.
- •Черев капиллярные трубки 1 в полость подается водород или гелий, что позволяет расширить частотный диапазон; 2—фольга; 3—центри- рующие иглы.
- •§ 4. Первичные источники звука
- •Фиг. 80. График установившегося распределения температур [34]. А—вблизи тонкой ленты фольги; б—вблизи тонкой проволоки.
- •§ 4. Первичные источники звука
- •Фиг. 83. Пистонфон с электродинамическим приводом.
- •§ 4. Первичные источники звука
- •Фиг. 84. Поперечный раэрез электростатического возбудителя.
- •Литература
- •Глава 4
- •§ 1. Введение
- •§ 2. Микрофоны в звуковом поле
- •§ 2. Микрофоны в звуковом поле
- •Ф к г. 8g. Чувствительность микрофона с углуб- ленной диафрагмой при двух углах падения (в дб по отношению к 1 в/бар).
- •Свободном поле.
- •Фиг. 89. Поперечный разрез гид- рофона за.
- •Фиг. 90. Характеристика направленности сферического микрофона с защитной сеткой.
- •§ 2. Микрофоны в звуковом поле
- •§ 3. Собственные шумы
- •§ 3. Собственные шумы
- •§ 4. Приемники звука
- •§ 4. Приемники звука
- •Ф и г. 93. Схема устройства челове- ческого уха.
- •Фиг. 95. Порог слышимости, определяемый тремя различ- ными методами.
- •§ 4. Приемники звука
- •Фиг. 96. Кривые, показывающие распределение (в процентном отношении) слушателей, могущих воспринимать звуки ниже данного уровня на каждой частоте.
- •Например, 75% слушателей воспринимают тон в 1000 гц при уровне его в 23 дб [14].
- •§ 4. Приемники ввука
- •Фиг. 98. Отношение звукового давления у входа в слуховой канал |к звуковому давлению в свободном поле, измеренному в точке, соответствующей центру головы, в дб.
- •§ 4. Приемники звука
- •Фиг. 101. Кривые равной громкости для полос шума шириной 300 мел (см. Фиг. 102).
- •Фиг. 102. Соотношение между субъективным ощущением высоты в мел и частотой [25].
- •И частоте 1200 гц [12].
- •§ 4. Приемники авука
- •Фиг. 104. Полосы слухового восприятия.
- •Ф и г. 105. Схематическое устройство уголь- ного микрофона.
- •Фиг. 106. Поперечный раз- рез угольного микрофона anb-mc-1.
- •Частота,
- •Фиг. 108. Характеристики угольного микрофона типа anb'-ml-l, приме- няемого ;в кислородных масках.
- •Фиг. 109. Спектральная плотность шума правильно сконструиро- ванного угольного микрофона [28].
- •§ 4. Приемники ееука
- •Фиг. 110. Схема действия конденсаторного микрофона.
- •Поляризации; 4—выходное напряжение.
- •Д. Берапек
- •Кабелей; б—полная схема [33].
- •§ 4. Приемники звука
- •2) Здесь автор допускает ошибку; дело заключается в том, что напряжение на конденсаторе содержит член, пропорциональный произведению переменных составляющих варяда и смещения диафрагмы.—Прим. Ред.
- •Ф|и г. 117. Эффективное напряжение шума, создаваемое кон- денсаторным микрофоном в полосах шириной в 1 гц, в зави- симости от частоты !ири двух различных нагрузках.
- •§ 4. Приемники звука
- •Фиг. 118. Принцип действия микрофона с под- вижной катушкой (динамического микрофона).
- •Вал ептв а и схема [1].
- •Диафрагмы.
- •§ 4. Приемники звука
- •2) Поэтому ленточные микрофоны, в которых обе стороны ленты открыты для звука, называются приемниками градиента давления.
- •Фиг. 121. Устройство ленточного микрофона.
- •Нижний зажим; б—провод к тран- сформатору.
- •Фиг. 123. Характерная форма кристалла сегнетовой соли. Показаны оси координат и пластинка, вырезанная перпендикулярно оси X.
- •Фиг. 124. Характерная форма кри- сталла дигидрофосфата аммония.
- •§ 4. Приемники звука
- •Ф и г. 128. Использование пластин с поперечным .Пьезоэффектом в при- емнике давления.
- •2) Следует указать, что биморфный элемент был предложен впервые Андреевым [58].—Прим. Ред.
- •§ 4. Приемники аоука
- •16 Л. Беру пси
- •Перфорированная
- •Необходимые сжимающие и растягивающие уси- лия возникают в каждой ns четырех кристалли- ческих пластин при воздействии давления на внешние поверхности пластин.
- •Фиг. 132. Схема микрофона, рабо- тающего на всестороннее сжатие, с кристаллом сульфата лития.
- •Фиг. 133. Электромеханическая эквивалентная схема пьезоэлек- трического микрофона.
- •Фиг. 436. Квадратный биморф- ный элемент, работающий па скручивание. Покаааны размеры, метод крепления и точка приложения силы.
- •Смонтирован по схеме фиг. 136.
- •Аммония.
- •§ 4. Приемники звука
- •Ф и г. 140. Максимальная нижняя граничная частота кристалла дигидрофосфата аммония в зависимости от температуры.
- •§ 5. Направленные микрофоны
- •§ 5* Направленные микрофоны
- •Трубок.
- •§ 5. Направленные микрофоны
- •Фиг. 144. Направленный приемник бегущей волны в виде пластинки, закре- пленной с одного конца.
- •§ 6. Противоветровая защита микрофонов1)
- •Воздухе.
- •§ 6. Противосетровал защита микрофонов
- •Фиг. 146. Эскиз противовстрового крепления микрофона заподлицо с плоскостью.
- •Фиг. 149. Эскиз большого обтекателя для установки конден- саторного микрофона с усилителем и питанием. Вес размеры в дюймах
- •Микрофона, изображенного на фиг. 146, 0 дб соответствует 1 е/бар; б—микрофона, изображенного на фиг. 147; е—микрофона, изображенного на фиг. 148; г—микрофона, изображенного на фиг. 149.
- •§ 7. Измерения силы звука
- •Фиг. 151. Комбинация приемников дав- ления и скорости для намерения интенсив- ности звука [46].
- •Литература
- •Глава 5
- •§ 2. Лабораторные генераторы
- •§ 2. Лабораторные генераторы
- •Фиг. 152. Блок-схема лабораторного эталона частоты с выходами без фильтров на частоты 100, 250, 1000, 10 000 и 100 000 гц.
- •С эталонной.
- •Проволочная спираль, электрически соединенная с кольцом б;
- •Лента для 8аписи; 3—контактный стержень; .4—к стандарт гене ратору импульсов.
- •0 Принцип работы этого приспособления известен автору от Юнга, которому он в свою очередь сообщен Шуком.
- •Фиг. 154. Запись, полученная на приборе фиг. 153.
- •Стрелки показывают место изменения частоты, обусловленного фэдингом. Бумага движется справа налево.
- •§ 2. Лабораторные генераторы
- •Фиг. 155. Схема настраиваемого камертона [9]. Показан рычажный механизм для передвижения грувинон.
- •9 Цент—интервал между двумя тонами, отношение частот которых равно корню степени 1200 из 2. Сто центов составляют один полутон равномерно-темперированного строя
- •§ 3. Обычные эталоны частоты
- •Фиг. 159. Схема электронного измерителя частоты [121. 1—генератор прямоугольных импульсов.
- •§ 3. Обычные эталоны частоты
- •Фиг. 160. Формы импульсов для электронного измери- теля частоты.
- •§ 3. Обычные эталоны частоты
- •§ 4. Измерения частоты методом сравнений
- •§ 4. Измерения частоты методом сравнений
- •Ф и г. 168а. Фотография хроматического стробоскопа фабричного типа, «Строботрон».
- •Ф и г. 1686. Фотография полного комплекта «Строботрон» вместе с настраиваемым эталонным камертоном.
- •§ 4. Измерения частоты методом сравнений
- •§ 5. Схемы деления частоты
- •§ 5. Схемы деления частоты
- •Фиг, 171. Схемы мультивибраторов, выделяющих а—чет- ные, б—нечетные, 6— некоторые заданные субгармоники. Графики дают коэффициент деления в функции от величины пода- ваемого сигнала [22].
- •Фиг. 172. Потенциал сетки управляемой лампы мульти- вибратора.
- •Фиг. 174. Разность потенциалов на конденса- торе с2 (см. Фиг. 173). Критический потенциал соответствует зажиганию тира- трона у4.
- •Литература
- •§ 1. Общие соображения
- •Рупорного
- •Сила, обусловленная током, приводит в движение диафрагму, нагруженную через предрупорную камеру с гибкостью с воздушного объема на входное сопроти- вление рупора.
- •§ 2. Методы измерения сопротивлений
- •§ 2. Методы измерения сопротивлений 1)
- •§ 3. Методы определения на поверхности
- •§ 4. Акустические длинные линии
- •§ 4. Акустические длинные линии
- •Фиг. 182. Распределение эффективного звукового давления в трубе в функции от расстояния от по- верхности образца а. Источник ввука справа.
- •§ 4. Акустические длинные линии
- •Ф и г. 183. График для определе- ния l по заданным V и г.
- •§ 4. Акустические длинные линии
- •Фиг. 185. Измерительная труба, работающая по принципу акустической длинной линии.
- •Щупом служит кристаллический микрофон на уэкой трубке р, сноль- зящей вдоль основной трубы в; с—поверхность образца [7].
- •К тележне l прикреплена трубка щупа р. Точная установка тележки производится с помощью головок с накаткой r [7].
- •§ 4. Акустические длинные линии
- •Фиг 188. Измерительная труба для работы с перемещаемым микрофоном при изме- нении длины трубы или изменении частоты [9].
- •§ 4. Акустические длинные линии
- •Фиг. 190. Специальная труба для измерения удельного акустического сопротивления весьма пористых экранов, например сеток [15].
- •Листа [15].
- •§ 5. Мости
- •§ 5. Мосты
- •Фиг. 192. Акустические мосты.
- •§ 5. Мосты
- •Фиг. 194. Типовая кривая поглощения для эталона переменного сопротивления Шустера и Штера.
- •§ 5. Мосты
- •197. Годограф сопротивления для эталона фиг. 19о.
- •§ 5. Мосты
- •Фиг. 199. Чисто активная нагрузка.
- •§ 5. Мосты
- •Фиг. 200. Схема электроакустического моста.
- •Gi kiui y'e2
- •Фиг. 201. Схема электрических плеч электроаку- стического моста и трансформатора.
- •§ 6. Реакция на источник
- •§ 6. Реакция на источник
- •Фиг. 202. Этапы определения постоянных преобразователя, слу- жащего для измерения акустического сопротивления.
- •§ 6. Реакция на источник
- •Фиг. 204. Диаграмма внесенного сопро- тивления, полученная методом «реакции на источник» [23].
- •§ 6. Реакция на источник 227 5 о хет
- •Литература
- •МорзФ., Колебания и звук, м_—л., 1949.
- •Cook r. К., Измерение акустического сопротивления с помощью короткой
- •Глава 7
- •§ 1. Введение
- •§ 2. Аудиометры с синусоидальным тоном
- •§ 2. Аудиометры с синусоидальным тоном
- •Ф и г. 208. Аудиометр.
- •§ 2. Аудиометры с синусоидальным тоном
- •§ 2. Аудиометры с синусоидальным тоном
- •§ 3. Речевые аудиометры
- •§ 3. Речевые аудиометры
- •16 Л. Беранек
- •Показано расположение аппаратуры в ящике для переноски. 1—граммофонный диск; 2—звукосниматель; 3—10 телефонов; 4—выход для дополнительных телефонов.
- •§ 4. Вспомогательные устройства для аудиометрии
- •§ 4. Вспомогательные устройства для аудиометрии
- •§ 5. Помещения для аудиометрии
- •Литература
- •Глава 8
- •§ 1. Человеческий голос и приборы* его имитирующие
- •Фиг. 212. Блок-схема установки Дадли (водера).
- •§ 1. Человеческий голос и приборы, его имитирующие
- •Над уровнем моря.
- •Диктор говорит в свободное пространство. См. Подпись к фиг. 213.
- •Семи дикторов.
- •Средняя кривая (пунктир с жирными точками) согласуется с данными, по- лученными раньше в лаборатории Белл. В левом нижнем углу покаван общий уровень в дб по отношению к 0,0002 бар.
- •§ 1. Человеческий голос и приборы, его имитирующие
- •Фиг. 216. Разность в дб между уровнями звукового давле- ния речи, произнесенной в кислородной маске на высоте 10 670 дина уровне моря.
- •Фиг. 217. Разность в дб между уровнями звукового давле- ния речи, произнесенной в свободное пространство на высоте в 10 670 м и на уровне моря.
- •Фиг. 218. Средний уровень звукового давления речи, произне- сенной в свободное пространство.
- •Фиг. 219. Кривые, показывающие относительную частость на- блюдения в 10 частотных полосах различных уровней звукового давления для интервалов времени, равных 1/8 сек.
- •§ 1. Человеческий голос и приборы, его имитирующие
- •§ 1. Человеческий еолос и приборы, его имитирующие
- •Слева—вид спереди, Справа—разреа по а—а.
- •§ 1. Человеческий голос и приборы, его имитирующие
- •Ф и г. 230. Фотография искусственного голоса ти- па 11, смонтированного в муляже головы.
- •Ф и г. 231. Эскиз возможного вариан- та расположения головки в искус- ственном голосе типа 111.
- •0 Дб соответствует 0,0002 бар.
- •Фиг. 235. Эскиз искусственной гортани для испытания ларингофонов.
- •§ 2. Источники авука малой мощности
- •§ 2. Источники звука малой мощности
- •Фиг. 237. Частотная характеристика электродинамического микрофона типа we 633а, используемого в качестве громкого- ворителя.
- •Звуковое давление измерялось на расстоянии в 30 см при токе сигнала 0,1 а. О дб соответствует 0,0002 бар.
- •Ф и г. 238. Характеристики телефонов электромагнитного с дополнительным затуханием, динамического, пьезоэлектрического я термофона. О дб соответствует 0,0002 бор.
- •Фиг. 239. Блок-схема аппаратуры для получения характери- стик переходных режимов головных телефонов.
- •300 Импульсов /сек
- •Квадратного импульса. Стационарные частотные характеристики для каждого случая показаны в верхней части рисунка.
- •§ 3. Мощны* получатели и источники импульсных звуков
- •Ф л г. 247. Разреа иалучателя Сен- Клера.
- •§ 3. Мощные излучатели и источники импульсных звуков
- •—Расстояние от горла конического рупора до воображаемой вер- шины конуса (см)]
- •Фиг. 248. Эквивалентная схема сирены.
- •§ 3. Мощные излучатели и источники импульсных звуков
- •Фи,г. 249. (Конструкция сирены Эриксона. А—вид сбсжу; б—вид спереди; в—чертеж ротора сирены.
- •Фиг, 251. Электрическая мощность, необходимая для вращения ро- тора сирены Эриксона в функции числа оборотов (или частоты).
- •Статором-
- •§ 3. Мощные излучатели и источники импульсных звуков
- •Фиг. 254. Разрез сирены, предназначенной для работы в широком диапазоне частот.
- •Ф и г. 255. Разрез сирены центробежного типа для получения оолыпих акустических мощностей.
- •Фиг. 256. Спектр звукового давления (расчетный), соз- даваемого сферическим объемом, в котором внезапно повышается температура.
- •Ф и р. 259. Осциллограммы звукового давления, создаваемого писто летом Флоберта па расстоянии 30 см.
- •Dudley 11., Синтетическая речь, Journ. Acoust. Soc. Am., 11, 169 (1939);
- •С 1 a r k к. C., Rudmose н. Yv., е I n s е n s t е I n j. C., Carl
- •19 Л. Берапек л итература
- •N l c h o I a r. И. , Jr., Влнявяо экрана конечных размеров на отдачу источни-
- •Глава 9
- •§ 1. Введение
- •§ 2. Элементы математической статистики
- •§ 2. Элементы математической статистики
- •§ 3. Рассмотрение случайных шумов статистическими методами
- •§ 3. Рассмотрение случайных шумов статистическими методами
- •Фиг. 265. Кривая нормального распределения.
- •§ 4. Некоторые статистические свойства случайных шумов
- •§ 4. Некоторые статистические свойства случайных шумов
- •§ 6. Флуктуации энергии фильтрованного случайного шума
- •§ 5. Отношение среднеквадратичного выпрямленного тока к среднему выпрямленному току при случайном шумовом напряжении
- •§ 7. Токи и напряжение на выходе простых выпрямителей на чистых тонах и на статистическом шуме
- •§ 7. Токи и напряжение на выходе простых выпрямителей на чистых тонах 305
- •§ 7. Токи и напряжение на выходе простых выпрямит,елей на чистых тонах 309'
- •Фиг. 274. Идеализированная схема пи- кового вольтметра.
- •§ 7. Токи и напряжение на выходе простых выпрямителей на чистых тонах 311
- •Крутизна характеристики выпрямителя равна аг.
- •§ 8. Показания линейных и квадратичных выпрямителей ' со смещением и током насыщения при статистическом шуме
- •§ 8. Показания линейных и квадратичных выпрямителей
- •13*. Бунимович в. И., Флюктуационные процессы в радиоприемных устройствах, м., 1951.
- •Литература
- •Глава 10
- •§ 1. Введение
- •§ 2. Измерительные приборы
- •Ф и г. 284. Схема идеа- лизированного пикового вольтметра.
- •Ф и г. 285. Принципиальная схема пико- вого вольтметра.
- •§ 2. Измерительные приборы
- •§ 2. Измерительные приборы
- •Фиг. 287. Отношение показаний пикового вольтметра к средне- квадратичному значению статистического шума а в функции Ri/r.
- •§ 2. Измерительные приборы
- •Фиг. 289. Схема вольтметра, позволяющего измерять пиковые значения одиночных импульсов.
- •§ 2. Измерительные приборы
- •Ф и г. 290. В—сеточная характеристика электрон- ной лампы (анодный ток в функции напряжения на сетке), б—схема вольтметра, измеряющего сред- ние значения.
- •Фиг. 292. График, иллюстрирующий соотношения между токами и напряжениями для схемы фиг. 291.
- •§ 2. Измерительные приборы
- •Ф и г. 293. Схема вольтметра средних значений с твердым выпрями- телем, обеспечивающая линейность характеристики выпрямления и ста- бильность показаний прибора.
- •§ 2. Измерительные приборы
- •0 Термопара как преобразователь рассмотрена в монографии Харкевича [33].—Прим. Ред.
- •Показана корректирующая схема для ис- правления характеристик элемента d при ис- пользовании его в приборах среднеквадра- тичных значений.
- •Ф и г. 298. Графики, показывающие влияние частоты на сопротивление и емкость меднозакисного элемента. Данные относятся к элементу d.
- •§ 2. Измерительные приборы
- •Ф и г. 299. Кривые температурных поправок для типового вольтметра переменного тока с меднозакисным выпрямителем. При температуре выше 25° с прибор дает заниженные показания.
- •Усилитель
- •§ 2. Измерительные приборы
- •§ 2. Измерительные приборы 337 оТ II (10.23) fel ё£
- •§ 2. Измерительные приборы
- •Ф н г. 305. Шкалы индикато- ров уровней.
- •О fie шкалы печатаются на цифер- блате одного и того же прибора, причем любая из них может быть внешней основной.
- •§ 3. Самопишущие регистраторы уровня
- •§ 3. Самопишущие регистраторы уровня
- •Фиг. 306. Упрощенная схема самопишущего реги- стратора уровня с магнитными муфтами.
- •Фиг. 307. Самопишущий регистратор уровня, в котором для пе- ремещения пишущего приспособления используется механическое устройство, управляемое магнитным путем.
- •§ 4. Эксперимент, определение характеристик измерительных приборов 343
- •§ 4. Экспериментальное определение характеристик измерительных приборов
- •Глава 11
- •§ 1. Введение
- •§ 2. Анализ стационарных звуков
- •Самописец.
- •Анализаторов.
- •Цепь обратной связи типа моста Вина имеет ширину по- лосы пропускания, пропорциональную средней частоте.
- •§ 2. Анализ стационарных звуков
- •Номограмма вполне точна только для стационарных звуков со сплош- ным спектром. Полная громкость звука со сплошным спектром определя- ется как сумма громкостей, соответствующих каждой полосе.
- •§ 2. Анализ стационарных звуков
- •§ 3. Анализ нестационарных звуков
- •§ 3. Анализ нестационарных звуков
- •Величина lit равна шпрппе шпалы анализатора Генричи.
- •§ 3. Анализ нестационарных звуков
- •§ 3. Анализ нестационарных звуков
- •Связь между контурами фильтра—слаОая.
- •30 Прямоугольных
- •30 Экспоненциальных импульсов
- •Спектрограмма представляется в виде ряда вертикальных .Чинив на экране плектронполучевой тру Они. Выходы каждого па фильтров коммутируются со раз в 1 сек.
- •Если лампа Tj работает на линейном участке ха- рактеристики, то V будет пропорционально инте- гралу по времени от ныпрямленного входного на- пряжения за период т.
- •Частота, гц
- •§ 3. Анализ нестационарных звуков
- •Ной решеткой.
- •Ф и г. 337. Относительное расположение акустической диффракционной решетки, микрофона а'1 и излучателя s.
- •§ 3. Анализ нестационарных звуков
- •Ф и г. 338. Схема анализатора речи, в котором на спектрограмме записываются уровни в функции частоты п времени.
- •§ 3. Анализ нестационарных звуков
- •Ф и г. 340. Анализатор, воспроизводящий спектр речи в функции времени на экране вращающейся цилиндрической электроннолучевой трубки.
- •§ 4. Калнбронка звукоиых анализаторов
- •§ 4. Калибровка звуковых анализаторов
- •Ф и г. 342. Схема калибровки анализатора при помощи электрических сигналов.
- •§ 1. Калибровка звуковых анализаторов
- •§ 4. Калибровка звуковых анализаторов
- •§ 4. Калибровка звуковых анализаторов 389
- •§ 4. Калибровка звуковых анализаторов
- •Ф в г. 347. Спектрограмма сигнала, спектральный уронепь которого изменяется со скоростью —5 дб/октава, измерен- ная при помощи октавных фильтров.
- •Ф в г. .'Vi8. Соотношение между Сп и среднегеометрической часто- той дли волос HiiipiiHoii и 1 октану.
- •Ф п г. 350. График для определения во заданным уровням и
- •§ 4. Калибровка звуковых анализаторов
- •Ность, пропускаемая п полосе прозрачности, превышала мощность, пропускаемую пне этой полосы, на 15 дб.
- •§ 4. Калибровка звуковых анализаторов
- •§ 5. Представление данных
- •1700 Об/мин 750 л. С Дата Подпись экспериментатора
- •1'Л. 11. Спектральный анализ
- •Ф и г. 358. Спектрограмма, полученная при помощи фильт- ров со смежными полосами.
- •§ 5. Представление данных
- •Фиг. 359. Форма бланка для частотных характеристик и т. И., предложенная лабораторией Белл.
- •Частоты.
- •Фиг. 361. Спектрограмма, представляющая собой комбина- цию сплошного и линейчатого спектров.
- •Глава 12
- •§ 1. Внедепие1)
- •3) Это утверждение автора верно пе во всех случаях, та it как специфика телефонных разговоров по словарю и обстановке проявляется не всегда.—Прим. Ред.
- •§ 2. Характеристики чувствительности
- •§ 2. Характеристики чувствительности
- •Фиг. 362. Эквивалентная схема микрофона в свободном звуковом поле.
- •§ 2. Характеристики чувствительности
- •Ф п г. 306. А- устройство для введения в схему микрофона известного напряжения; б—соответствующая эквивалент- ная схема.
- •§ 2. Характеристики чувствительности
- •Ф и г. 308. Блок-схема усили теля.
- •Ф в г. 369. Схемы для измерения усиления по мощ- ности усилителя.
- •Ф и г. 370. Блок-схема устройства для измерения характеристики усилителя методом добавочного сопротивления.
- •27 Л. Вера
- •§ 2. Характеристики чувствительности
- •Ф и г. 373. Метод измерения отдачи линии связи.
- •§ 2. Характеристики чувствительности
- •§ 2. Характеристики чувствительности
- •§ 2. Характеристики чувствительности
- •Усилитель
- •Динамические: громкоговоритель
- •§ 3. Ортотелефонная чувствительность
- •§ 3. Ортотелефонная чувствительность
- •Ф и г. 376.. Блок-схема линии связи.
- •Перепонки.
- •Ф и г. 377. Измерение ортотолефоннон характеристи- ки телефонной линии связи.
- •§ 4. Число повторений
- •§ 4. Число повторений
- •§ 5. Артикуляционные измерения
- •§ 5. Артикуляционные измерения
- •§ 5. Артикуляционные измерения
- •Ф и г. 381. Разница и разборчивости слои w при дан- ных условиях для семп слушателей (л—ж).
- •Штрихованные столбики—при приеме в тишине, сплошные— в шуме.
- •Ф и г. 382. Результаты измерений разборчивости слов w в трех различных линиях связи (1, 2, 3) двумя разными артикуляционными бригадами.
- •Одна бригада имела большой опыт проведения измерений (сплошные столбики), другая не имела такого опыта (заштри- хованные столбики) [13].
- •28 Л. Беранек
- •Ф и г. 383. Типичная тренировочная кривая ар- тикуляционной бригады для некоторой линии связи.
- •§ 6. Субъективная оценка качества передачи
- •§ 6. Субъективная оценка качества передачи ц
- •Очень хорошо 1—отлично
- •§ 7. Пороговые методы
- •Литература
- •Глава 13
- •§ I. Введение
- •§ 2. Частотная характеристика чувствительности
- •§ 2. Частотная характеристика чувствительности
- •§ 2. Частотная характеристика чувствительности
- •Ф н г. 387. Зависимость отношения колебатель- ной скорости (умноженной на р0с) к давлению в дб, как функция кг.
- •§ 2. Частотная характеристика чувствительности
- •§ 3. Направленность микрофонов
- •§ 3. Направленность микрофонов
- •Ф и г. 389. Бланк для графического определения коэффици- ента направленности микрофона q (/).
- •9 Величина r (9) часто называется нормированной характеристикой направленности.—Прим. Ред.
- •§ 3. Направленность микрофонов
- •Ф и г. 390. Подсчет коэффициента направленности для четырех различных частот.
- •§ 4. Отдача микрофонов
- •§ 4. Отдача микрофонов
- •§ 5. Нелинейные искажения
- •§ 5. Нелинейные искао/сения
- •Ф п г. 391. Резонансная труба, применяемая для селективного подавления гармоник.
- •S 8. Динамический диапазон микрофоном
- •Литература
- •Глава 14
- •§ 1. Введение
- •§ 2. Частотная характеристика
- •§ 2. Частотная характеристика
- •§ 2. Частотная характеристика
- •§ 2. Частотна.Ч характеристика
- •§ 2. Частотная характеристика
- •30 Л. Берапек
- •Ф н г. 397. Зависимость фактора накопления энергии в помещении («усиления помещения») а'» от объема помещения 114].
- •Ф и г. 398. Время реверберации на частоте 512 гц, принятое для вычисления значений Кг, приве- денных на фиг. 397, в зависимости от объема помещения [14].
- •Ф и г. 399. Характеристики громкоговорители и пяти различ- ных помещениях но отношению к его характеристике на открытом воздухе. Все кривые совмещены но вертикали на частоте 1000 гц.
- •Ф и г. 400. Величина коэффициента направленности q в зави- симости от частоты для громкоговорителя, характеристика которого изображена на фиг. 390.
- •§ 3. Направленность
- •§ 3. Направленность
- •Ф и г. 402. Координатная систе- ма для вычисления коэффициента направленности q.
- •§ I. Отдача
- •§ 4. Отдача
- •§ 5. Нелинейные искажения
- •Ф и г. 403. Блок-схема устройства для измерения нелинейных искажений.
- •§ 5. Нелинейные искажения
- •Ф и г. 404. Блок-схема устройства для измерения искажений взаимной модуляции.
- •§ 6. Электрическое полное сопротивление
- •§ 7. Номинальная мощность
- •§ 8. Воспроизведение переходных процессов
- •Ф к г. 400. Искажения ноустановившегося процесса в громкоговорителе.
- •§ 9' Эффективность по громкости
- •§ 9. Эффективность по громкости
- •Ф и r. 40s. Относительные сила звука и громкость в полосе с верхней границей / [14].
- •Фиг. 409. Корректирующий контур, предназначенный для кор- рекции спектра статистического шума.
- •Ф и г. 411. Кривые уровней, создаваемых голосо.М, ма- лым и большим оркестрами в закрытых помещениях различных объемов.
- •Standards Proposal № 197, Radio Manufacturers Association, 1947.
- •Loudspeaker Frequency-response Measurements, Technical .Monograph № 1, Jensen
- •Brittain f. II., Williams e., Воспроизведение громкоговорителем
- •Глава 15
- •§ 1. Введение1)
- •§ 2. Действительная чувствительность микрофона 2)
- •Этап а—измерение спектра речи; этап б—измерение спектра выходного напряжении микрофэни при использовании того же самого речевого материала, что и на этапе а.
- •§ 2. Действительная чувствительность микрофона
- •Два;измерения с каждым из трех дикторов со стандартной испытательной фразой. Нагрузка микрофона 100 ом при токе короткого замыкания 65 ми.
- •Ф и г. 418. Действительные чувствительности электромагнитного ларингофона для трех различных дикторов, полученные со стан- дартной испытательной фразой. Нагрузка ларингофона 100 о.Н.
- •§ 3. Измерения микрофонов при помощи искусственного голоса
- •§ 3. Измерения микрофонов при помощи искусственного голоса
- •Ф в г. 419. Блок-схема аппаратуры для измерений связных микрофонов при помощи искусственного голоса.
- •0 Установка искусственный голос типа и была описана в гл. 8.
- •§ 3. Измерения микрофонов при помощи искусственного голоса
- •Фиг. 421. Внешний вид установки для измерения связных микрофонов, позволяющей проводить измерения при различ- ных положениях микрофона.
- •§ 3. Измерения, микрофонов при помощи искусственного голоса
- •Ф и г. 422. Частотные характеристики чувствительности угольного микрофона, полученные методом лаборатории Белл (а) и методом сравнения (в).
- •Сделано по три измерения при звуковом давлении 104 дб па рас- стоянии 6,35 .Ч.Н. Ток короткого замыкания 65 .Иа.
- •32 Л. Берапск
- •Имеется два источника звука—шумовой и сигнальный.
- •§ 3. Намерения микрофонов при помощи искусственного голоса
- •Фиг. 420. Частотные характеристики чувствительности малогаба- ритного угольного микрофона при изменении режима питания.
- •§ 4. Действительная отдача телефонов
- •§ 4. Действительная отдача телефонов
- •Фиг. 430. Измерительная камера для зонда с труб- кой весьма малого диаметра.
- •§ 4. Действительная отдача телефонов
- •Ф п г. 432. Головной зажим и зонд с гибкой трубкой дли измерений звукового давлении в слуховом канале под заглушкой.
- •В этом случае давление определяется на расстоянии нескольких миллиметров от передней поверхности телефона.
- •Частота, гц
- •Ф и г. 133. Кривая для пересчета звукового давления под заглуш- ками к звуковому давлению ва барабанной перепонке.
- •По вертикальной оси отложено отношение второго давления к первому, выраженное в дб. Кривая получена для телефона и заглушки, показанных
- •Частота ,гц
- •§ 4. Действительная отдача телефонов
- •Ф и г. 430. Метод равных громкостей для измерения действи- тельной частотной характеристики отдачи телефонов.
- •Этап в. Б—испытуемый телефон.
- •§ 5. Измерения телефонов искусственным ухом
- •Ф и г. 437. Поперечное сечение искусственного уха [16].
- •Ф и г. 438. Полное акустическое сопротивление человеческо- го уха, измеренное через выходное отверстие телефона, прижатого к уху.
- •§ 5. Измерения телефонов искусственным ухом
- •Другого типа.
- •§ 5. Измерения телефонов искусственным ухом
- •Ф и г. 447. Схема для измерения нелинейных искажений телефона при помощи испытательной камеры.
- •§ 6. Измерения телефонов костной проводимости с искусственным мастоидом
- •Кривые совмещены на 1000 гц.
- •§ 7. Измерение шумозлглуше1шя заглушек
- •§ 7. Измерение шумоааглугиения заглушек
- •Измерения производились по модифицированному ортотелефонному методу с подачей чистого тона, источник которого располагался перед оператором. По вертикальной оси отложено шумозаглушение в 06.
- •Источник звука сбоку от оператора. По вертикальной оси отложено шумо- заглушение в 06.
- •§ 8. Аппараты для тугоухих
- •Для тугоухих.
- •Ф и г. 454. Мягкая подвеска ап парата для тугоухих при пзмере пнях в заглушенной камере.
- •§ 8. Аппараты для тугоухих
- •Фиг. 455. Размещение аппаратуры при использовании камеры для микрофона.
- •Частота, кгц
- •Ф и г. 456. Сравнение частотных характеристик аппарата для тугоухих.
- •Л и тература
- •Глава 16
- •§ 1. Введение
- •§ 2. Эталонные линии
- •§ 4. Артикуляционная бригада
- •§ 3. Выбор уровней шума
- •§ 4. Артикуляционная бригада
- •§ 5. Тренировка бригады
- •§ 6. Порядок измерений
- •§ 6. Порядок измерений
- •Погядок измерений для последовательности из 24 измерении
- •1) Различные варианты звуков речи, связанные с одной и той же буквой, звучат различно в зависимости от того, в каком созвучии встречается данный звук (например, звук «т» в словах «костер», «топь»),
- •§ 8. Проверка записей
- •§ 9. Анали31результатов
- •§ 9. Анализ результатов
- •§ 10. Упрощенные [артикуляционные измерения
- •Глава 17
- •§ 2. Измерения переходных процессов
- •§ 2. Измерения переходных процессов
- •Средние линии означают атмосферное давление.
- •§ 2. Измерения переходных процессов
- •Кривые слева изображают мгновенные значения звукопого давления; кривые справа—огибающие их в логарифмическом масштабе.
- •§ 2. Намерения переходных процессов
- •§ 2. Измерения переходных процессов
- •§ 2. Измерения переходных процессов
- •§ 2. Измерения переходных процессов
- •§ 2. Измерения переходных процессов
- •Шкала состаилсня дли диапазона записи 50 Об па бумаге шириной 50 мм, при спорости движения бумаги 50 мм/го.К.
- •§ 2. Измерения переходных процессов
- •Помещении. Цифры на графике обозначают ча- стоты модуляции.
- •1'Л. 17. Измерения акустических свойств аудиторий, студий и зал
- •§ 3. Измерение стационарного состояния
- •§ 3. Измерение стационарного состояния
- •Ф и г. 48g. Измерения уровня звукового давления в функции пространственной ориентации направленного микрофона в зале «Колизей» в Мюнхене.
- •Ф и г. 487. Автоматически управляемый направленный .Микрофон трубчатого типа.
- •§ 4. Измерение разборчивости речи
- •Л итература
- •Глава 18
- •§ 1. Введение
- •§ 1. Введение
- •Пре л пол а га стен, что объёмная пористость у близка к единице. Обе переменные продета ».Н пот собой безразмерные величины.
- •§ 2. Основные акустические величины
- •§ 2. Основные акустические величины
- •§ 2. Основные акустические величины
- •§ 2. Основные акустические величины
- •Ф н г. 496. Устройства для пропускания воздуха через образец материала.
- •Ф и г. Л97. Типовые результаты измерений акустических матов при помощи аппарата, показанного на фиг. 494.
- •§ 2. Основные акустические величины
- •Ф и г. 498. Аппарат для измерения объемной пористости y акустического материала. Материал помещается в камере к объема V. Т—трубка сечения s.
- •§ 2. Основные акустические величины
- •Ф и г. Л99. Разрез устройства для динамического измере- ния объемной пористости акустического материала.
- •Ф п г. 501. Схематическое изображение различного вида пор в акустических материалах.
- •§ 2. Основные акустические величины
- •§ 3. Коэффициент поглощения
- •§ 3. Коэффициент поглощения
- •2 Svhl(i_«V)
- •§ 3 Коэффициент поглощения
- •Ф и г. 503. Номограмма для перевода вещественной и мни- мой частей относительного сопротивления z/pc в коэффи- циент поглощения для нормального падения.
- •38 Л. Беранек
- •J 4. Звукоизоляция
- •§ 4. Звукоизоляция
- •Ф и г. 504. Расположение камер для измерения • звукоизоляции. Образцы перегородок помешаются между камерами s п н2, образцы перекрытий — между s и Hj. Источник находится в камере s.
- •Ф и г. 505. Расположение камор в Национальной физи- ческой лаборатории в Англии. Трем камерам для измерения звукоизоляции и ревербераци- онной камере придана неправильная форма.
- •§ 4. Звукоизоляция
- •Фиг. 506. Вращающийся многоэлементный источник звука, применяемый для измерения звукоизоляции. В более поздней конструкции используется 10 отдельных громкоговорителей.
- •§ 4. Звукоизоляция
- •Ф п г. 507. Графическое изображение четырех функций от Аг / s, фигурирующих в формулах звукоизоляции.
- •Ф и г. 508. Ленточный микрофон особой конструкции, позволя- ющей поместить ленточку близко к измеряемой панели.
- •§ 4. Звукоизоляция
- •Значепия.
- •§ 4. Звукоизоляция
- •Частота .Ги
- •§ 5. Изоляция от ударных звуков
- •§ 5. Изоляция от ударных звуков
- •Ф и г. 514. Аппарат для ударного возбуждения пере- крытия с частотой 5 ударов/сек.
- •Ф и г. 515. Аппарат для ударного возбуждения пе- рекрытия мощностью 1 вт при частоте 440 уда- ров/мин. [40].
- •Литература
- •§ 2. Американский стандартный шумомер
- •На всех частотах)
- •§ 3. Английский объективный шумомер
- •§ 3. Английский объективный гиумомер
- •Фиг. 518. Кривая, показывающая число Об, которое следует вычесть из показаний прибора средних зна- чений, для получения уровня компоненты эквивалент- ного звука.
- •Ф и г. 519. Кривые поправок, которые нужно приба- вить к показаниям корректированного прибора сред- них значений, для получения уровня громкости в фонах.
- •Предметны й указатель
- •IIредметный указатель
- •40 Л. Бсранен
54
Гл.
2. Возмущение
тоских звуковых волн препятствиями
Здесь
приняты обозначения: А = о>/с — волновое
число, с —скорость звука, г —расстояние
от края экрана. Волна распространяется
вдоль оси 6 = 0. На фиг. 52 приведены графики
возмущений звукового поля в дб.
Графики показывают, что в плоскости
экрана (б = 90°) возмущение
е=/ао2—
отсутствует;
впереди экрана поле имеет осциллирующий
характер с периодичностью,
соответствующей кг
^3,2; позади экрана поле монотонно
ослабевает.
В
акустических измерениях иногда
приходится считаться с влиянием тела
экспериментатора, представляющего
собой с акустической точки зрения
диффрагирующее препятствие неправильной
формы с поверхностью, обладающей
конечным акустическим сопротивлением.
До настоящего времени были исследованы
две части человеческого тела: голова
и область груди. Диффракция звука
вокруг^оловы существенна в вопросах
непосредственного восприятия при
оценке громкости звука, порога'
слышимости, локализации звука. Винер
[8] измерил зависимость звуковогоФиг. 51. Полу бесконечный плоский жесткий экран в поле звуковой волны. Жирная линия—экран. Направление падающей плоской волны показано стрелками.
§ 6. Диффракция звука на человеческом теле
55
давления
от частоты и угла падения для правого
и левого уха для не-
скольких
наблюдателей, помещенных в поле волны
с вертикальным фрон-
том.
Часть данных Винера приведена в виде
графиков в гл. 4. Основной
результат
Винера—независимость звукового
давления в слуховом канале
от
ориентировки наблюдателя относительно
источника звука. На любой
частоте
для азимутов, не превышающих 90°,
диффракция звука вокруг
головы
приводит к повышению давления по
сравнению с давлением в сво-
бодном
поле. При отрица-
тельных
азимутах (особенно 10
при
высоких частотах) голо-
ва
отбрасывает ясно выра- ^
женную
тень1).
Данные
по диффракции
звука
вокруг груди потребо- о
вались
для расчета чувстви-
тельности
приборов для туго-
ухих
[9, 10]. Для этого про-
изводилось
сравнение вы-
ходного
напряжения при _/0
подвеске
этих приборов в
свободном
поле и при укре-
плении
их на груди человека.
Оказалось,
что результаты
сильно
зависят от типа при-
бора
и от характера одежды
человека,
пользующегося
прибором.
Общее представление о результатах
измерений дает фиг. 53.
Приближенно
заменяя человеческое тело плоским
экраном размером
125x485x660
мм,
Хэнсон
пришел к аналогичной кривой для
случая
нормального
падения. Впрочем, чрезвычайная
неоднородность результатов
экранирования
телом для различных лиц и для разных
расстояний от
микрофона
не позволяет описать явление какой-либо
одной кривой.
1000 юооо
Частота.,
гц
РАЗМЕРОВ
В
качестве источника звука при разного
рода испытаниях обычно применяют
громкоговоритель с экранирующим ящиком.
Поперечные размеры такого ящика примерно
в 2 раза больше диаметра конуса
излучателя. Обычные теории рассматривают
излучение конечного поршня в условиях
бесконечного экрана. Никольс [11]
исследовал влияние конечных размеров
экрана для ряда экранов различных
диаметров2).
Опыты производились в заглушенной
камере; диаметр излучателя составлял
19 мм.
Такая
постановка опыта была вызвана следующим
наблюдением Никольса, произведенным
также в заглушенной камере. Оказалось,
что при удалении микрофона от точечного
источника звука, снабженного круглым
экраном, имеющим диаметр 400 мм,
убывание
звукового давления не изображается
прямой линией на графике зависимости
уровня, выраженного в дб
от логарифма расстояния, а колеблется
вокруг расчетных§ 7. Источники 8вука, пометценные в экранах конечных раэмеров
Фиг. 53. Типичный график отношения, выра- женного в дб, звукового давления на груди человека, обращенного лицом к источнику, к давлению в свободном поле.
§ 7. Источники звука, помещенные в экранах конечных