
- •БИЛЕТ 1
- •1) Стационарные, нестационарные и установившиеся состояния низкотемпературных систем. Открытые и закрытые системы.
- •2) Ожижение газов и газовых смесей. Минимальная работа ожижения в условиях p=const V=const. Сравнение Lmin для различных газов.
- •3) Применение дросселирования в низкотемпературных установках.
- •БИЛЕТ 2
- •2) Охлаждение газообразных веществ в условиях открытой и закрытой термодинамической системы. Минимальная работа, необходимая для охлаждения в условиях P=const и V=const.
- •3) Назначение теплообменных аппаратов. Простейший расчёт теплообменного аппарата.
- •БИЛЕТ 3
- •2) Откачка паров кипящей жидкости, основные отношения и способы реализации. Применение метода откачки, температруная стратификация при откачке.
- •3) Особенности ожижения неона,водорода и гелия.
- •БИЛЕТ 4
- •1) Методика применения принципа сохранения энергии для анализа и расчёта низкотемпературных машин, аппаратов и установок.
- •3) Изотермическое сжатие в компрессоре для различных газов. Соотношение между подведённой работой и отведённой теплотой.
- •БИЛЕТ 5
- •1) Примеры составления энергетического баланса для различных систем и элементов низкотемпературных установок
- •3) Особенности работы регенеративного теплообменного аппарата
- •БИЛЕТ 6
- •1) Второй и третий законы термодинамики. Теорема Нернста. Идеальная тепловая машина.
- •БИЛЕТ 7
- •1) Принцип возрастания энтропии как следствие 2 закона т-д
- •3) Особенности использования детандеров в низкотемпературных установок.
- •БИЛЕТ 8
- •3) Основные типы теплообменных аппаратов
- •БИЛЕТ 9 МЕНЯЙ К ЧЁРТОВОЙ МАТЕРИ БИЛЕТ!!!!
- •БИЛЕТ 10
- •2) Энтропийный баланс низкотемпературных систем. Следствие принципа аддитивности энтропии.
- •3) Изотермическое сжатие в компрессоре для различных газов. Соотношение между проведённой работой и отведённой теплотой.
- •БИЛЕТ 11
- •1) Компенсация возрастания энтропии. Теорема Гюи-Стодолы
- •2) Интегральный эффект дросселирования. Зависимость от температуры и давления
- •3) Способы вычисления приращения энтропии в результате недорекуперации двухпоточного теплоообменника
- •БИЛЕТ 12
- •2) Определение характеристик цикла простого дросселирования. Ожижительный режим.
- •3) Сравнение процессов выхлопа и изоэнтропного расширения
- •БИЛЕТ 13 МЕНЯЙ К ЧЁРТОВОЙ МАТЕРИ БИЛЕТ!!!!
- •БИЛЕТ 14
- •2) Расширение газа в вихревых трубах, особенности рабочего процесса. Оценка эффективности.
- •3) Дроссельные рефрижераторные циклы. Их основные характеристики.
- •БИЛЕТ 15
- •1) Разделение и очистка газов. Технологические процессы и очистки. Минимальная работа разделен газообр смесей
- •2) Дросселирование паров и жидкостей. Применение этих процессов в низотемпер циклах
- •3) Особенности применения детандеров в низкотемп установках
- •БИЛЕТ 16
- •2) Процессы сопровождающиеся понижением температуры в адиабатных условиях
- •3) Определение основных характеристик дроссельного цикла простого дросселирования для рефрижератного режима
- •БИЛЕТ 17
- •2) Типы низкотемпературных циклов.
- •3) Цикл парокомпрессионной холодильной машины и сравнение его с воздушным циклом простого дросселирования. Основные характеристики.
- •БИЛЕТ 18
- •1) Процессы размагничивания парамагнетиков
- •2) Понятие холодопроизводящего процесса в низкотемпературном цикле. Теорема о полной холодопроизводительности цикла.
- •3) Рефрижераторный цикл простого дросселирования с предварительным охлаждением. Схема, изображение на TS диаграмме. Последовательность расчета. Основные характеристики.
- •БИЛЕТ 19
- •1) Термодинамический анализ наиболее распространенных рабочих процессов, сопровождающихся понижением температуры
- •2) Основные холодопроизводящие процессы. Определение полезной и полной холодопроизводительности цикла
- •3) Термоэлектрические процессы
- •БИЛЕТ 20
- •1) Характеристики процессов дросселирования для чистых веществ и смесей
- •2) Понятие теоретического цикла и его сравнение с идеальным. Критерии оптимальности при термодинамическом анализе циклов.
- •3) Ожижительный цикл дросселирования с предварительным охлаждением. Схема, изображение на T-S диаграмме. Последовательность расчета. Основные характеристики
- •БИЛЕТ 21
- •1) Зависимость ah от давления и температуры.
- •2) Анализ процесса выхлопа – свободного выпуска газа из баллона постоянного объёма. Уравнение процесса выхлопа. Изменение температуры и энтальпии в процессе выхлопа. Способы реализации этого процесса.
- •3) Рефрижераторный цикл дросселирования с предварительным охлаждением. Схема, изображение на TS диаграмме. Последовательность расчёта. Основные характеристики.
- •БИЛЕТ 22
- •1) Полная и полезная холодопроизводительность. Виды потерь в низкотемпературных установках и их определение
- •2) Специфика организации низкотемпературных циклов с твердофазными рабочими телами
- •БИЛЕТ 23
- •1) Инверсия дроссель-эффекта. Кривые инверсии.
- •БИЛЕТ 24
- •1) Процесс Дросселирования. Способы реализации дросселирования.
- •2) Безмашинные способы понижения температуры.
- •3)Использование процесса выхлопа в криогенных установках. Машина Мак-Магона-Гиффорда
- •БИЛЕТ 25
- •1) Равновесное адиабатное расширение газа (s-const). Зависимость αs от давления и температуры.
- •2) Основные принципы построения низкотемпературной установки, использующей магнитокалорический эффект.
- •3) Идеальный и реальный циклы парокомпрессионной машины.
- •БИЛЕТ 26
- •2) Термоэлектрическое охлаждение.
- •3) Основные принципы построения низкотемпературных циклов.
- •БИЛЕТ 27
- •1) Изотермическое сжатие в компрессоре идеальных и реальных газов
- •2) Детандирование. Способы организации процессов детандирования. Оценка эффективности расширительных машин.
- •3) Особенности ожижения гелия
- •БИЛЕТ 28
- •2) Производство энтропии в двухпоточном противоточном теплообменнике.
- •3) Особенности ожижения и хранения жидкого водорода.
- •БИЛЕТ 29
- •1) Тепловой эффект дросселирования. Зависимость от температуры и давления.
- •2) Изотермическое сжатие в компрессоре реального газа. Соотношение между работой и теплотой.
- •3) Особенности ожижения неона.
- •БИЛЕТ 30
- •1) Интегральный эффект дросселирования. Зависимость от температуры. Сравнение с интегральным эффектом изоэнтропного расширения.
- •2) Закон сохранения энергии для закрытых систем.
- •3) Особенности процессов дросселирования газов, паров и жидкостей.

БИЛЕТ 24
1) Процесс Дросселирования. Способы реализации дросселирования.
Дросселирование.
Данный процесс был исследован Джоулем и Томпсоном.
Дросселированием называется изоэнтальпный процесс расширения газа в адиабатныхусловиях,приегодвижениичерезгидравлическоесопротивление. При этом не совершается и не выделяется никакая внешняя работа, и скоростной напор на входе и выходе из расширительного устройства остаётся неизменным.
(последнее справедливо на некотором удалении от места расширения) Дросселирование – необратимый процесс, характеризующийся потерями, которые можно вычислить через величину производства энтропии.
Рисунок 71. Схема процесса дроселлирования.
Устройства для реализации процесса дросселирования.
В микрохолодильных установках для осуществления процесса дросселирования используется калиброванное отверстие, обычно находящееся на конце трубопровода.
Рисунок 72. Микрохолодильные дроссельные устройства.
В бытовых холодильниках используется капиллярная трубка, в которой происходит процесс распределённого дросселирования.
Рисунок 73. Капиллярная трубка.
Для крупных и средних низкотемпературных установок используются регулируемые дроссельные вентили.

Рисунок 74. Регулируемый вентиль.
Криогенные дроссельные вентили нужно тщательно изолировать, чтобы гарантировать адиабатность процесса. Редко изолируют в бытовых холодильниках.
Поскольку процесс адиабатный без подвода и отвода работы, то энтальпия газа постоянна. Основное назначение процесса дросселирования – понизить температуру газа или жидкости.
Понижение температуры при падении давления в процессе дросселирования является основной характеристикой дросселирования и называется дроссельэффектом.
Три типа дроссель эффекта:
1)Дифференциальный
2)Интегральный
3)Тепловой
2)Безмашинные способы понижения температуры.
1)Использование естественного холода (240 К – 300 К) –
холода толщи почвы, холодной воды, льда, запасённого зимой или перевезённого с горных местностей;
2)Дросселирование (0,7 К – 300 К) – адиабатное расширение газов, паров и жидкостей, проходящих через гидравлическое сопротивление. Осуществляется в открытой системе и является неравновесным ( необратимым) процессом. Дросселирование описывается уравнением h=const;
В процессе дросселирования температура может как понижаться, так и повышаться. Это зависит от начального и конечного давления, начальной температуры и рода газа. Используется в парокомпрессионных холодильных установках ( холодильник бытовой) и ожижителях.
Работа при дросселировании не совершается.
3)Адиабатное расширение газа при его перетекании из одного объёма в другой, т.е. процесс расширения при котором внутренняя энергия остаётся постоянной.
Не смотря на обязательное понижение температуры, процесс труднореализуем и не используется на практике.
4)Выхлоп – свободный выпуск сжатого газа из сосуда, является адиабатным расширением с совершением внешней работы против окружающей среды в неравновесных условиях, в начале процесса выхлоп идёт близко к изоэнтропному расширению S=const.
Вобластях умеренного холода 120 К -300 К используется редко.
Вобластях низкого холода 0,7 К – 120 К используется достаточно широко. Пример: машина Гиффорда – Макмагона и ожижитель Симона для получения жидкого гелия.
5)Вихревое адиабатное расширение газа в специальных вихревых трубах (Ранка-Хилша), где происходит разделение расширенного газа на два потока, имеющие разные температуры. Горячий поток выходит с периферии трубы, а холодный из центра. Широко используется в области умеренного холода и в отдельных установках в области низкого холода.
6)Барботаж – прохождение газовых пузырей через слой жидкости. В результате происходит испарение паров жидкости в газовые пузыри, температура жидкости и газа уменьшаются. Используется для охлаждения газов и жидкости в области умеренного холода, и достаточно хорошо используется для получения пониженных температур жидкости в области глубокого холода.
7)Смешение или растворение веществ в жидком, твёрдом или газообразном состояниях, сопровождающееся понижением температуры, что является следствием того, что теплоёмкость смеси больше суммы парциальных теплоёмкостей компонентов этой смеси. Используется в установках умеренного холода (водо-аммиачные и бромисто-литиевые холодильные машины.
Вобласти сверхнизких температур при растворении жидкого гелия-3 в сверхтекучем гелии-4, что позволяет достигнуть температур порядка 0,001 К.
8)Термоэлектрический эффект (возникновение разности температур при прохождении электрического тока на спаях разнородных проводящих материалов (обычно полупроводников). Используется в установках умеренного холода.
9)Возникновение разности температур в проводнике при прохождении через него электрического тока в магнитном поле.

Редко используется в установках умеренного и глубокого холода и почти не используется в области сверхнизкого холода.
3)Использование процесса выхлопа в криогенных установках. Машина Мак-Магона-Гиффорда
Выхлоп – свободный выпуск сжатого газа из сосуда, является адиабатным расширением с совершением внешней работы против окружающей среды в неравновесных условиях, в начале процесса выхлоп идёт близко к изоэнтропному расширению S=const.
Вобластях умеренного холода 120 К -300 К используется редко.
Вобластях низкого холода 0,7 К – 120 К используется достаточно широко. Свободный выход газа из замкнутой емкости с совершением работы против окружающей среды.
Рисунок 98. Процесс выхлопа.
изоэнтропный, а затем отклоняется
(от изоэнтропы)н – const – формула А.М.
Архарова=
Рассмотрим термодинамическое описание процесса выхлопа.
Рисунок 99. Схема выхлопа.
Газ в процессе расширения совершает внешнюю работу против окружающей среды, поэтому конечное давление выхлопа равно давлению окружающей среды.
Использование выхлопа в качестве основного холодопроизводящего процесса реализовано в машине Мак-Магона – Гиффорда.
Рисунок 101. Машина Гиффорда-Макмагона.
−газ изотермически сжимается в компрессоре
−поступает в ресивер
−через открытый клапан охлаждается в регенераторе
−расширяется путём выхлопа в расширительной части с подводом полезной тепловой нагрузки
−под действием циклического движения поршня расширившийся газ после подвода проходит через регенератор, охлаждая его и проходя через открытый второй клапан при закрытом первом, поступает во второй ресивер
и из него на всасывание в компрессор Достоинства:
−низкое давление газа (10 – 20 атм.)
−простота конструкции Недостатки:
−большие размеры машины
−наличие системы переключающихся клапанов