Добавил:
Developer Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

СОС зачёт ответы

.pdf
Скачиваний:
13
Добавлен:
25.03.2023
Размер:
1.08 Mб
Скачать

С момента запуска процесс последовательно переживает определённый набор состояний (в той или иной очередности):

1.Выполнение — состояние когда процесс непосредственно исполняется на процессоре

2.Готовность — процесс временно приостановлен, чтобы позволить выполняться другим процессам (при это других объективных причин для невыполнения данного процесса может не существовать).

3.Блокировка — процесс не может выполняться до тех пор, пока не произойдёт некоторое внешнее относительно этого процесса событие (например, пока не освободится устройство ввода-вывода или пока от другого процесса не будут получены необходимые для выполнения данные).

Потоки

В некоторых операционных системах каждому процессу соответствует адресное пространство и один поток команд (собственно программа), называемый управляющим потоком. По сути это и есть процесс. На деле, часто удобно иметь несколько параллельных (псевдопараллельных) управляющих потоков в одном и том же адресном пространстве.

Рассмотренное понятие процесса базируется на двух независимых концепциях: группировании ресурсов, необходимых программе (память, устройства и т.п.), и выполнении самой программы. Иногда полезно разделять эти концепции. В результате приходим к понятию потока.

Потоком (или управляющим потоком)будем называть последовательность команд, со связанным с нею указателем команд.

Детально рассмотрим отличие понятий потока и процесса. Процесс подразумевает группировку ресурсов (при запуске процесса, он требует от системы какие-то ресурсы). Когда необходимые ресурсы (в том числе процессорное время) выделены процессу, запускается управляющий поток (то есть процесс непосредственно исполняется). Поток подразумевает лишь исполнение управляющего потока. При этом, по сути в рамках одного процесса могут выполняться несколько потоков. Объединение в процессе нескольких потоков обеспечивает всем потокам одни и те же ресурсы и совместную работу с ними.

Такой подход оказывается очень удобным. Например, рассмотрим текстовый редактор. Запущен один процесс — текстовый редактор. В рамках этого процесса запущено три потока: первый из них обеспечивает запоминание вводимого пользователем текста,

второй поток обеспечивает отображение вводимых данных на экране так, как этот текст будет размещён на листе, третий поток проверяет орфографию во введённом тексте. Все потоки, запущенные в рамках процесса текстового редактора используют одни и те же ресурсы — введённые пользователем текст, при этом каждый по-своему обрабатывает этот текст. Такой подход очень удобен и на стадии проектирования. Однажды определив, каким образом потоки будут взаимодействовать между собой, можно проектировать соответствующие потоки независимо друг от друга, соблюдая лишь договорённости о взаимодействии.

При запуске многопоточного процесса в системе с одним процессором потоки работают поочередно. Пример работы процессов в многозадачном режиме был показана на

рис. Рисунок 2Error: Reference source not found. Иллюзия параллельной работы нескольких различных последовательных процессов создается путем постоянного переключения системы между процессами. Многопоточность реализуется примерно так же. Процессор переключается между потоками, создавая впечатление параллельной работы потоков.

Часто потоки используются обработки возникающих в системе и пользовательском приложении событий. Такие процессы называются всплывающими. После запуска в приложении выполняется лишь один поток. В момент возникновения какого-либо события "всплывает" поток, основной задачей которого является обработка произошедшего события.

Пример 3.3. Длительная обработка события

Допустим, программа (написанная, скажем, на Delphi) должна по нажатию кнопки "Копировать" на форме приложения, программа должна произвести резервное копирование большого количества файлов, при этом отображая ход этого резервного копирования на визуальной шкале

(progressbar).

Когда программа запущена, и пользователь нажал кнопку "Копировать", происходит обработка события "Нажатие на кнопку". Пока это событие не обработано до конца, приложение не будет реагировать ни на одно другое внешнее событие. Соответственно, если копирование происходит длительное время (больше нескольких секунд), операционная система сочтёт приложение зависшим. В частности, не будет осуществляться перерисовка окна приложения (а там ведь должна отображаться визуальная шкала).

Чтобы избежать такой ситуации, необходимо поступить следующим образом. При нажатии на кнопку "Копировать", приложение создаст новый управляющий поток, который должен будет осуществлять резервное копирование. При этом обработка события "Нажатие на кнопку" будет завершена, как только поток создан. После этого приложение готово реагировать на любые другие события. Созданный поток осуществляет резервное копирование. Поскольку оба потока работают в одном адресном пространстве, поток копирования может обращаться к элементу формы "визуальная шкала" и менять на ней значение. При этом приложение будет верно функционировать.

Межпроцессное взаимодествие

Процессам (и потокам) необходимо взаимодействовать друг с другом. При этом возникает ряд ситуаций, требующих дополнительного регулирования. Например, если несколько процессов используют один и тот же ресурс, необходимо контролировать последовательность получения доступа, чтобы процессы работали корректно. Рассмотрим способы организации межпроцессорных взаимодействий.

Пример 3.4. Спулер (spooler)

Пусть процессу необходимо вывести страницу (или несколько страниц) на печать, он помещает данные для печати в спулер (в зависимости от операционной системы это может быть каталог, файл или область памяти). Другой процесс, отвечающий за печать, по очереди берёт переданные задания и выводит их на принтер.

Тем самым снимается конкуренция за использование принтера различными процессами. Кроме того, процесс печати может решать по каким-либо определённым правилам в какой очерёдности следует пускать задания на печать.

Заметим, что спулер в данном примере реализует межпроцессное взаимодействие, в котором множество процессов желающих вывести данные на принтер взаимодействуют через общий ресурс (спулер) с печатающим процессом. При этом ресурс "принтер" по сути монопольно занят один единственным печатающим процессом.

В случае взаимодействия двух произвольных процессов, не всегда возможно организовать в операционной системе специальный процесс для регулирования этих взаимодействий. Чтобы решить задачи взаимодействий на совместно используемых ресурсах вводят некоторые специальные понятия.

Критическая секция (или критическая область)— это часть программы, в которой происходит обращение к совместно используемым ресурсам.

Критерий отсутствия состязательности. Два и более процессов, использующих один и тот же общий ресурс не состязаются за этот ресурс тогда и только когда, когда в критической секции, связанной с этим ресурсом одновременно находится не более чем один из этих процессов.

В самом деле, часть времени процесс занимается внутренними расчётами и не использует общий ресурс. Как только этот процесс входит в критическую секцию, т.е. происходит работа с общим ресурсом, об этом особым образом становится известно. Если в это время (пока первый процесс не вышел из критической секции) какой-либо другой процесс попробует войти в критическую секцию (т.е. начать работать с общим ресурсом), ему будет в этом отказано. Точнее, второй процесс будет приостановлен до тех пор, пока первый не выйдет из критической секции. Это можно проиллюстрировать на рисунке.

Теоретическая концепция критических областей имеет несколько стандартных реализаций, применяемых в различных операционных системах. Подробно рассмотрим лишь некоторые из них.

1. Запрет прерываний.

Если прерывания запрещены, то невозможно и переключение на другой процесс, который может состязаться за какие-либо ресурсы. Однако такой подход весьма неразумен, поскольку заранее не известно время, которое процесс будет находиться в критической области. Таким образом, пока пользовательский процесс в критической секции, не сможет произойти ни одна обработка, в том числе системных и неотложных событий.

2. Переменные блокировки

Если процессы используют один и тот же ресурс, разумно использовать некоторую общую переменную — переменную блокировки— которую изначально положить равной 0, а когда процесс будет входить в критическую область, он будет менять значение этой переменной на 1. Таким образом, если некоторый процесс хочет войти в критическую секцию, а переменная блокировки равна 1, процесс будет ожидать до тех пор, пока переменная блокировки не обратится в 0, что будет означать в критической секции не находится ни одного процесса.

Кроме рассмотренных можно назвать распространённые реализации: строгое чередование, алгоритм Петерсона, флаги готовности, алгоритм булочной

(Bakeryalgorithm).

В простейших случаях концепция критических секций отлично срабатывает. Но существует ряд ситуаций, когда критических секций не достаточно. Рассмотрим на примере.

Проблема производителя и потребителя.Пусть два процесса совместно используют буфер ограниченного размера. Один из процессов помещает в буфер информацию (назовём этот процесс производителем), а другой читает информацию из буфера (назовём этот процесс потребителем). Трудность возникнет в тот момент, когда производитель заполнит буфер целиком. Решение очевидно, производитель должен ожидать пока потребитель прочтёт частично или полностью информацию из буфера. Аналогичная трудность возникнет, когда потребитель обратится к буферу для чтения и обнаружит, что буфер пуст. В этом случае потребитель должен ждать, пока производитель не поместит информацию в буфер.

Решение кажется достаточно простым, но приводит к состязательному состоянию двух процессов, даже при использовании критических секций в реализации производителя и потребителя. Дело в том, что для учёта заполненности буфера необходимо использовать какую-то общую для производителя и потребителя переменную. И как раз за эту переменную процессы будут состязаться. Можно ввести вспомогательный механизм, решающий задачу, например, установить бит активации, указывающий можно ли получать доступ к счётчику заполненности буфера. Однако можно смоделировать ситуацию с несколькими процессами, когда это решение не будет работать. Требуется сформулировать более общий подход.

В 1965г. Дейкстра (E.W. Dijkstra) предложил использовать специальную переменную целого типа, получившую название —семафор. Семафор связывается с совместно используемым ресурсом. Каждое обращение к ресурсу абстрактно будем называтьсигналом активизации.

Семафор— это неотрицательная целочисленная переменная, связанная с совместно используемым ресурсом, которая может быть нулём (в случае отсутствия

сохранённых сигналов активизации) или некоторым положительным числом, соответствующим количеству отложенных сигналов активизации.

Над семафорами определены две операции:

1.down(sem) — сравнивает значение семафора с нулём, если значение больше нуля, то уменьшает его на 1 (то есть расходует один из сохраненных сигналов активизации) и возвращает управление. Если значение семафора равно нулю, процедураdown() не возвращает управление процессу, а процесс переводится в состояние ожидания.

2.up(sem) — увеличивает значение семафора на 1. При этом если с этим семафором связаны один или более ожидающих процессов, которые не могут завершить более раннюю операциюdown(), а это означает что значение семафора равно 0, один из ожидающих процессов будет выбран системой и ему будет разрешено завершитьdown().

Мьютекс—это семафор, находящийся в одном из двух возможных состояний: 0 — блокирован, либо 1 — не блокирован. Если процесс должен войти в критическую секцию, и мьютекс не заблокирован, процесс входит в критическую секцию, при этом заблокировав мьютекс. Если мьютекс заблокирован, вызывающий процесс блокируется до тех пор, пока процесс, работающий в критической области, не выйдет из неё.

Впредставленном в примере решении используются три семафора: один для подсчета заполненных сегментов буфера (full), другой для подсчета пустых сегментов (empty), а третий предназначен для исключения одновременного доступа к буферу производителя и потребителя (mutex). Значение счетчика fullисходно равно нулю, счетчик empty равен числу сегментов в буфере, a mutex равен 1. Рассмотрим действия обоих процессов пошагово.

Процесс производитель (producer) создаёт новый элемент, чтобы потом поместить его в буфер. Следующим шагом семафор, указывающий количество свободных элементов буфера уменьшается. При этом если уменьшить этот семафор нельзя (в случае, когда он равен нулю), производитель будет ожидать, пока не появится хоть один свободный элемент. Если же уменьшение прошло удачно, производитель сообщает о том, что он входит в критическую секцию (вход будет произведён лишь в том случае, если потребитель не находится в критической секции). Исполняя критическую секцию, производитель помещает созданный элемент в буфер, после чего сообщает о выходе из критической секции и увеличивает семафор, отражающий число заполненных элементов буфера.

Процесс потребитель (consumer) уменьшает значение семафора, указывающее количество занятых элементов буфера. При этом, если семафор нельзя уменьшить (он равен нулю), потребитель будет ожидать, пока в буфере не появится хоть один заполненный элемент. Если уменьшение прошло успешно, потребитель уменьшает мьютекс, тем самым сообщая о входе в критическую секцию. Вход в критическую секцию произойдёт только если производитель не находится в критической секции, в противном случае потребитель будет ожидать, пока производитель не выйдет из критической секции. Исполняя критическую секцию, потребитель забирает из буфера элемент, после чего сообщает о выходе из критической секции и увеличивает семафор, отражающий число свободных элементов буфера. Завершающим этапом, потребитель обрабатывает полученный из буфера элемент.

+ В примере семафоры использовались двумя различными способами. Это различие достаточно значимо, чтобы сказать о нем особо. Семафор mutex используется для реализации взаимного исключения, то есть для исключения одновременного обращения к буферу и связанным переменным двух процессов.

7. Функции операционной системы

Основные функции:

Выполнение по запросу программ (ввод и вывод данных, запуск и остановка других программ, выделение и освобождение дополнительной памяти и др.).

Загрузка программ в оперативную память и их выполнение.

Стандартизованный доступ к периферийным устройствам (устройства вводавывода).

Управление оперативной памятью (распределение между процессами, организация виртуальной памяти).

Управление доступом к данным на энергонезависимых носителях (таких как жёсткий диск, оптические диски и др.), организованным в той или иной файловой системе.

Обеспечение пользовательского интерфейса.

Сохранение информации об ошибках системы.

Дополнительные функции:

Параллельное или псевдопараллельное выполнение задач (многозадачность).

Эффективное распределение ресурсов вычислительной системы между процессами.

Разграничение доступа различных процессов к ресурсам.

Организация надёжных вычислений (невозможности одного вычислительного процесса намеренно или по ошибке повлиять на вычисления в другом процессе), основана на разграничении доступа к ресурсам.

Взаимодействие между процессами: обмен данными, взаимная синхронизация.

Защита самой системы, а также пользовательских данных и программ от действий пользователей (злонамеренных или по незнанию) или приложений.

Многопользовательский режим работы и разграничение прав доступа (см. аутентификация, авторизация).

8. Что такое ядро ОС?

Ядро операционной системы (Kernel) - часть операционной системы: постоянно находящаяся в оперативной памяти, управляющая всей операционной системой, содержащая: драйверы устройств, подпрограммы управления памятью, планировщик заданий, реализующая системные вызовы и т.п.

Все операции, связанные с процессами, выполняются под управлением той части операционной системы, которая называется ядром. Ядро представляет собой лишь небольшую часть кода операционной системы в целом, однако оно относится к числу наиболее интенсивно используемых компонент системы. По этой причине ядро обычно резидентно размещается в основной памяти, в то время как другие части операционной системы перемещаются во внешнюю память и обратно по мере необходимости. Одной из самых важных функций, реализованных в ядре, является обработка прерываний. В

больших многоабонентских системах в процессор поступает постоянный поток прерываний. Быстрая реакция на эти прерывания играет весьма важную роль с точки зрения полноты использования ресурсов системы и обеспечения приемлемых значений времени ответа для пользователей, работающих в диалоговом режиме.

Когда ядро обрабатывает текущее прерывание, оно запрещает другие прерывания и разрешает их снова только после завершения обработки текущего прерывания. При постоянном потоке прерываний может сложиться такая ситуация, что ядро будет блокировать прерывания в течение значительной части времени, т. е. не будет иметь возможности эффективно реагировать на прерывания. Поэтому ядро обычно разрабатывается таким образом, чтобы оно осуществляло лишь минимально возможную предварительную обработку каждого прерывания, а затем передавало это прерывание на дальнейшую обработку соответствующему системному процессу, после начала работы которого ядро могло бы разрешить последующие прерывания.

Основные функция ядра: ядро операционной системы, как правило, содержит программы для реализации следующих функций:

обработка прерываний;

создание и уничтожение процессов;

переключение процессов из состояния в состояние;

диспетчирование;

приостановка и активизация процессов;

синхронизация процессов;

организация взаимодействия между процессами;

манипулирование блоками управления процессами;

поддержка операций ввода-вывода;

поддержка распределения и перераспределения памяти;

поддержка работы файловой системы;

поддержка механизма вызова-возврата при обращении к процедурам;

поддержка определенных функций по ведению учета работы

машины.

Типы архитектур ядер операционных систем:

Монолитное ядро

Монолитное ядро предоставляет богатый набор абстракций оборудования. Все части монолитного ядра работают в одном адресном пространстве. Это такая схема операционной системы, при которой все компоненты её ядра являются составными частями одной программы, используют общие структуры данных и взаимодействуют друг с другом путём непосредственного вызова процедур. Монолитное ядро — старейший способ организации операционных систем. Примером систем с монолитным ядром является большинство UNIX-систем.

Достоинства: Скорость работы, упрощённая разработка модулей. Недостатки: поскольку всё ядро работает в одном адресном пространстве, сбой в одном из компонентов может нарушить работоспособность всей системы. Примеры: Традиционные ядра UNIX (такие как BSD), Linux; ядро MS-DOS, ядро KolibriOS.

Монолитные ядра имеют долгую историю развития и усовершенствования и, на данный момент, являются наиболее архитектурно зрелыми и пригодными к эксплуатации. Вместе

с тем, монолитность ядер усложняет их отладку, понимание кода ядра, добавление новых функций и возможностей, удаление «мёртвого», ненужного, унаследованного от предыдущих версий кода. «Разбухание» кода монолитных ядер также повышает требования к объёму оперативной памяти, требуемому для функционирования ядра ОС. Это делает монолитные ядерные архитектуры малопригодными к эксплуатации в системах, сильно ограниченных по объёму ОЗУ, например, встраиваемых системах, производственных микроконтроллерах и т. д.

Модульное ядро

Модульное ядро — современная, усовершенствованная модификация архитектуры монолитных ядер операционных систем. В отличие от «классических» монолитных ядер, модульные ядра, как правило, не требуют полной перекомпиляции ядра при изменении состава аппаратного обеспечения компьютера. Вместо этого модульные ядра предоставляют тот или иной механизм подгрузки модулей ядра, поддерживающих то или иное аппаратное обеспечение (например, драйверов). При этом подгрузка модулей может быть как динамической (выполняемой «на лету», без перезагрузки ОС, в работающей системе), так и статической (выполняемой при перезагрузке ОС после переконфигурирования системы на загрузку тех или иных модулей).

Все модули ядра работают в адресном пространстве ядра и могут пользоваться всеми функциями, предоставляемыми ядром. Поэтому модульные ядра продолжают оставаться монолитными. Модульность ядра осуществляется на уровне бинарного образа, а не на архитектурном уровне ядра, так как динамически подгружаемые модули загружаются в адресное пространство ядра и в дальнейшем работают как интегральная часть ядра. Модульные монолитные ядра не следует путать с архитектурным уровнем модульности, присущий микроядрам и гибридным ядрам. Практически, динамичная загрузка модулей, это просто более гибкий способ изменения образа ядра во время выполнения — в отличие от перезагрузки с другим ядром. Модули позволяют легко расширить возможности ядра по мере необходимости.

Модульные ядра удобнее для разработки, чем традиционные монолитные ядра, не поддерживающие динамическую загрузку модулей, так как от разработчика не требуется многократная полная перекомпиляция ядра при работе над какой-либо его подсистемой или драйвером. Выявление, локализация, отладка и устранение ошибок при тестировании также облегчаются. Примером может служить VFS — «виртуальная файловая система», совместно используемая многими модулями файловых систем в ядре Linux.

Микроядро

Микроядро – предоставляет только элементарные функции управления процессами и минимальный набор абстракций для работы с оборудованием. Бо́льшая часть работы осуществляется с помощью специальных пользовательских процессов, называемых сервисами. Решающим критерием «микроядерности» является размещение всех или почти всех драйверов и модулей в сервисных процессах, иногда с явной невозможностью загрузки любых модулей расширения в собственно микроядро, а также разработки таких расширений.

Достоинства: Устойчивость к сбоям оборудования, ошибкам в компонентах системы. Основное достоинство микроядерной архитектуры — высокая степень модульности ядра операционной системы. Это существенно упрощает добавление в него новых компонентов. В микроядерной операционной системе можно, не прерывая её работы,

загружать и выгружать новые драйверы, файловые системы и т. д. Существенно упрощается процесс отладки компонентов ядра, так как новая версия драйвера может загружаться без перезапуска всей операционной системы. Компоненты ядра операционной системы ничем принципиально не отличаются от пользовательских программ, поэтому для их отладки можно применять обычные средства. Микроядерная архитектура повышает надежность системы, поскольку ошибка на уровне непривилегированной программы менее опасна, чем отказ на уровне режима ядра.

Недостатки: Передача данных между процессами требует накладных расходов. Классические микроядра предоставляют лишь очень небольшой набор низкоуровневых примитивов, или системных вызовов, реализующих базовые сервисы операционной системы.

Сервисные процессы (в принятой в семействе UNIX терминологии — «демоны») активно используются в самых различных ОС для задач типа запуска программ по расписанию

(UNIX и Windows NT), ведения журналов событий (UNIX и Windows NT),

централизованной проверки паролей и хранения пароля текущего интерактивного пользователя в специально ограниченной области памяти (Windows NT). Тем не менее, не следует считать ОС микроядерными только из-за использований такой архитектуры.

Примеры: Symbian OS; Windows CE; OpenVMS; Mach, используемый в GNU/Hurd и Mac

OS X; QNX; AIX; Minix; ChorusOS; AmigaOS; MorphOS.

Экзоядро

Экзоядро — ядро операционной системы, предоставляющее лишь функции для взаимодействия между процессами и безопасного выделения и освобождения ресурсов. Предполагается, что API для прикладных программ будут предоставляться внешними по отношению к ядру библиотеками (откуда и название архитектуры). Возможность доступа к устройствам на уровне контроллеров позволит эффективней решать некоторые задачи, которые плохо вписываются в рамки универсальной ОС, например, реализация СУБД будет иметь доступ к диску на уровне секторов диска, а не файлов и кластеров, что положительно скажется на быстродействии.

Наноядро

Наноядро — архитектура ядра операционной системы, в рамках которой крайне упрощённое и минималистичное ядро выполняет лишь одну задачу — обработку аппаратных прерываний, генерируемых устройствами компьютера. После обработки прерываний от аппаратуры наноядро, в свою очередь, посылает информацию о результатах обработки (например, полученные с клавиатуры символы) вышележащему программному обеспечению при помощи того же механизма прерываний. Примером является KeyKOS — самая первая ОС на наноядре. Первая версия вышла ещё в 1983-м году.

Гибридное ядро

Гибридные ядра — это модифицированные микроядра, позволяющие для ускорения работы запускать «несущественные» части в пространстве ядра. Имеют «гибридные» достоинства и недостатки.

9.Чем user space отличается от kernel space?

Пространство ядра. ОС Linux (которая является ядром) управляет оборудованием машины в простой и эффективной манере, предлагая пользователю простой и единообразный интерфейс программирования. Таким же образом ядро, и, в частности, его драйверы устройств, форма моста или интерфейса между конечным пользователем/программистом и оборудованием. Любые подпрограммы или функции, входящие в состав ядра (модули и драйверы устройств, например), считаются частью ядра.

Пространства пользователя. Программы конечного пользователя, такие как оболочка UNIX или другие приложения на основе графического пользовательского интерфейса (например, kpresenter), являются частью пространства пользователя. Очевидно, что эти приложения должны взаимодействовать с системным оборудованием. Однако, они делают это не напрямую, а через поддерживаемые ядром функции.

Всё это показано на Рисунке 1.

Рисунок 1. Пользовательское пространства, где находятся приложения, и пространство ядра, где находятся модули или драйверы устройств

10. Два основных вида ядра и ОС в чем их различия?

Ядро подразделяется на два основных типа:

монолитное ядро

Микро-Ядра

Монолитное Ядро

В этом типе архитектуры ядра все функции, такие как управление процессами, управление памятью, обработка прерываний и т. д. выполняются в пространстве ядра.Монолитные ядра сначала состояли только из одного модуля, и этот модуль отвечал за все функции, которые выполнялись ядром. Это увеличило производительность ОС, так как все функции

Соседние файлы в предмете Современные операционные системы