- •Введение
- •Требования к содержанию лекций
- •Организация лабораторного практикума
- •Программа лабораторного практикума
- •Лабораторная работа 1. Краткосрочное планирование задач
- •Лабораторная работа 2. Замещение областей памяти
- •Лабораторная работа 3. Синхронизация процессов/потоков
- •Лабораторная работа 5. Файловые системы
- •Литература
- •Основные понятия и определения
- •Распределение ресурса «центральный процессор»
- •Процесс и поток – типы ресурсов операционной системы
- •Классификация ОС по признаку поддержки процессов и потоков
- •1. Однозадачные ОС
- •2. Многозадачные ОС без поддержки многопоточности
- •3. Многозадачные ОС с поддержкой многопоточности
- •Реализация многопоточности внутри программы пользователя
- •Состояния потока
- •Дескрипторы процессов и потоков
- •Операции над процессами
- •1. Создание процесса
- •2. Завершение процесса
- •Операции над потоками
- •1. Создание потока
- •2. Завершение потока
- •Планирование
- •Модель поведения процесса с одним потоком
- •Критерии оценки алгоритмов планирования
- •Алгоритмы планирования в системах пакетной обработки данных
- •«Кратчайшая задача - первая» (Shortest Job First, SJF)
- •«Наименьшее оставшееся время выполнения»
- •Алгоритмы планирования в интерактивных системах
- •«Циклическое планирование» (Round Robin, RR)
- •«Приоритетное планирование»
- •«Самый короткий поток - следующий»
- •«Гарантированное планирование»
- •Лотерейное планирование
- •Планирование с использованием многоуровневых очередей
- •Алгоритм планирования Windows NT
- •Алгоритм планирования UNIX
- •Алгоритм планирования UNIX System V Release 4
- •Алгоритм планирования Linux (версия ядра 2.2 и ниже)
- •Заключение
- •Управление памятью
- •Архитектура оперативной памяти
- •Способ описания физической памяти
- •Алгоритм обеспечения пространственного мультиплексирования
- •Схема с фиксированными разделами
- •Оверлейная структура
- •Свопинг
- •Схема с переменными разделами
- •Общие вопросы управления страничной памятью
- •Алгоритмы замещения страниц
- •Оптимальный алгоритм
- •Алгоритм FIFO - Выталкивание первой пришедшей страницы
- •Алгоритм Second-Chance - Вторая попытка
- •Алгоритм «часы»
- •Заключение
- •Взаимодействие потоков – передача данных и синхронизация
- •Взаимодействие потоков
- •Критическая секция
- •Задача взаимного исключения
- •Семафоры
- •Тупики
- •Синхронизирующие объекты ОС
- •Сигналы
- •Обмен сообщениями (message passing) (Хоар, 1978 год)
- •Реализация взаимоисключений
- •Алгоритм Петерсона
- •Алгоритм булочной (Bakery algorithm)
- •Аппаратная поддержка взаимоисключений
- •Команда Test-and-Set (Проверить и присвоить 1)
- •Команда Swap (Обменять значения)
- •Классические задачи взаимодействия потоков
- •Задача "Производитель-потребитель"
- •Задача "Читатели-писатели"
- •Задача "Обедающие философы"
- •Проблема спящего брадобрея
- •Передача данных между взаимодействующими потоками
- •Архитектура файловой системы
- •Файлы с точки зрения пользователя
- •Типы объектов файловой системы
- •Имена объектов файловой системы
- •Операции над файлами
- •Директории – логическая структура файлового архива
- •Операции над директориями
- •Пользовательский интерфейс системы управления файлами
- •Виртуальная Файловая Система
- •Принцип работы
- •Структура VFS
- •Типы объектов в VFS
- •Символьные связи (мягкие ссылки)
- •Именованные конвейеры (именованные каналы)
- •Реализация VFS
- •Лабораторная работа 1. Краткосрочное планирование задач
- •Симулятор многозадачной системы
- •Модель эксперимента
- •Архитектура программной лаборатории
- •Проведение эксперимента
- •Выполнение лабораторной работы
- •Архитектура планировщика в Linux (Ядро 2.4.18)
- •Очередь процессов
- •Кванты времени центрального процессора
- •Выбор процесса на исполнение
- •Вычисление эффективного приоритета и размера кванта
- •Вытеснение процесса
- •Изменение алгоритма планирования
- •Компиляция и установка ядра Linux
- •Литература по лабораторной работе 1
- •Лабораторная работа 2. Замещение областей памяти
- •Симулятор многозадачной системы
- •Управление памятью в Linux (ядро 2.4.18)
- •Описание физической памяти в Linux
- •Узлы
- •Зоны
- •Отметки уровня воды (watermarks)
- •Страницы
- •Адресное пространство процесса
- •Страничные сбои
- •Выделение памяти по запросу
- •Подкачка по запросу
- •Демон выгрузки страниц (kswapd)
- •Кэш страниц
- •Добавление страниц в кэш страниц
- •Заполнения списка «холодных» страниц
- •Стратегия замещения страниц
- •Изменение стратегии замещения
- •Литература по лабораторной работе 2
- •Механизмы межпроцессного взаимодействия ОС UNIX
- •Семафоры.
- •Очереди сообщений.
- •Работа с разделяемой памятью.
- •Механизмы межпроцессного взаимодействия ОС Windows
- •Wait-функции
- •События
- •Ожидаемые таймеры
- •Семафоры
- •Мьютексы
- •Литература по лабораторным работам 3-4
- •Лабораторная работа 5. Файловые системы
- •Предлагаемые к реализации файловые системы
- •Файловая система 1
- •Файловая система 2
- •Файловая система 3
- •Симулятор работы с файловой системой
- •Постановка задачи
- •Операции над файлами
- •Операции над директориями
- •Требования к лабораторной работе
- •Архитектура программной лаборатории
- •Обзор архитектуры модуля поддержки файловой системы в Linux
- •Модули драйвера файловой системы Minix
- •Описание суперблока файловой системы
- •Описание индексного дескриптора (inode)
- •Основной файл заголовков
- •Исходные тексты функций работы с индексным дескриптором
- •Исходные тексты функций работы с объектами ФС разных типов
- •Другие модули
- •Реализация драйвера файловой системы
- •Литература по лабораторной работе 5
- •Литература
- •Дополнительная литература
Лабораторный практикум по курсу "Операционные системы"
снижается, а тем процессам, которые часто уходят в состояние ожидания после короткого периода использования процессора, приоритет повышается. Таким образом, процессам, ведущим себя не по-джентельменски, дается низкий приоритет, что означает, что они реже выбираются на выполнение. Но процессам с низким приоритетом даются большие кванты времени, чем процессам с высокими приоритетами. Таким образом, хотя низкоприоритетный процесс и не работает так часто, как высокоприоритетный, но зато, когда он наконец выбирается на выполнение, ему отводится больше времени.
Планировщик использует, в частности, следующие характеристики для процессов разделения времени:
-величина глобального приоритета;
-количество тиков таймера, которые отводятся процессу до его вытеснения (размер кванта);
-число тиков таймера, оставшихся в кванте процесса;
-системная составляющая приоритета процесса (базовое значение);
-системная составляющая приоритета, назначаемая процессу при истечении его кванта времени;
-системная составляющая приоритета, назначаемая процессу после выхода его из состояния ожидания; ожидающим процессам дается высокий приоритет, так что они быстро получают доступ к процессору после освобождения ресурса;
-величина системной составляющей приоритета, назначаемая процессу, если он находится в состоянии «готов к выполнению» длительное время.
-системная часть приоритета процесса;
-верхний предел и текущее значение пользовательской части приоритета (эти два атрибута могут модифицироваться пользователем);
-nice - используется для обратной совместимости с системным вызовом nice; содержит текущее значение величины nice, которая влияет на результирующую величину приоритета. Чем выше эта величина, тем меньше приоритет.
Алгоритм планирования Linux (версия ядра 2.2 и ниже)
Потоки в системе Linux реализованы в ядре, поэтому планирование основано на потоках, а не на процессах. В операционной системе Linux алгоритмом планирования различаются три класса потоков:
1.Потоки реального времени, обслуживаемые по алгоритму FIFO (First In First Out - первым прибыл - первым обслужен).
2.Потоки реального времени, обслуживаемые в порядке циклической очереди.
3.Потоки разделения времени.
Потоки реального времени, обслуживаемые по алгоритму FIFO, имеют наивысшие приоритеты и не могут прерываться другими потоками, за исключением такого же потока реального времени FIFO, перешедшего в состояние готовности.
Потоки реального времени, обслуживаемые в порядке циклической очереди (RR), представляют собой то же самое, что и потоки времени, обслуживаемые по алгоритму FIFO, но с тем отличием, что для них указывается размер кванта, и они могут прерываться таймером. По окончании кванта RR-поток становится в конец очереди потоков своего уровня приоритета. Ни один из классов на самом деле не является классом реального времени. Здесь
38 Учебно-исследовательская лаборатория «Информационные технологии»
