- •1. Ключевые события в истории развития компьютерных сетей. Локальные и глобальные сети.
- •2. Сетевая операционная система. Типы сетевых приложений. Клиент, сервер, сетевая служба
- •3. Коммутация, обобщенная задача коммутации. Топология сетей.
- •2 Лекция
- •4. Эталонные модели osi и tcp/ip (уровни, за что каждый отвечает). Сравнение.
- •3 Лекция
- •5. Стандартизация протоколов локальных сетей. Семейство стандартов ieee 802.X
- •6. «Классическая» технология Ethernet. Mac-адрес. Формат кадра. Алгоритм доступа к среде csma/cd. Обработка коллизий
- •7. Логическая структуризация сети. Мост локальной сети, алгоритм прозрачного моста
- •8. Коммутируемая сеть Ethernet. Коммутатор, отличия от моста и концентратора. Борьба с перегрузками.
- •4 Лекция
- •5 Лекция
- •9. Формат ip-адреса и маски, использование масок. Отображение ip-адресов на локальные адреса.
- •10. Разрешение имен и служба dns. Иерархическая структура доменных имен.
- •11. Порядок назначения ip-адресов. Протокол dhcp.
- •6 Лекция
- •12. Протокол ip, состав ip-пакета. Ip-маршрутизация, таблицы маршрутизации.
- •13. Протокол icmp. Утилиты traceroute, ping
- •14. Задачи протоколов транспортного уровня. Протоколы udp и tcp.
- •15. Особенности реализации скользящего окна в протоколе tcp. Управление потоком в tcp.
- •16. Порты и сокеты. Назначение номеров портов.
- •7 Лекция
- •17. Технология cidr. Распределение адресов. Маршрутизация.
- •18. IPv6. Отличия от iPv4. Переход на iPv6.
- •8 Лекция
- •19. Дистанционно-векторные протоколы маршрутизации. Протокол rip.
- •9 Лекция
- •10 Лекция
- •23. Межсетевые экраны, определение, функции. Классификация межсетевых экранов согласно фстэк России.
- •24. Ngfw и waf. Их отличия от «классических» межсетевых экранов и utm.
- •11 Лекция
- •12 Лекция
- •13 Лекция
- •14 Лекция
- •32. Обнаружение и реагирование на конечных точках (edr). Определение, решаемые задачи.
14. Задачи протоколов транспортного уровня. Протоколы udp и tcp.
• Главная задача протоколов транспортного уровня TCP и UDP заключается в передаче данных между прикладными процессами, выполняющимися на компьютерах в сети.
• Каждый компьютер может выполнять несколько процессов, более того, даже отдельный прикладной процесс может иметь несколько точек входа, выступающих в качестве адресов назначения для пакетов данных.
• Процедура распределения протоколами TCP и UDP поступающих от сетевого уровня пакетов между прикладными процессами называется демультиплексированием.
• Данные, генерируемые разными приложениями, работающими на одном конечном узле, должны быть переданы общему для всех них протокольному модулю IP для последующей отправки в сеть. Этот процесс называется мультиплексированием.
Протокол UDP
Протокол UDP
• Является дейтаграммным протоколом, реализующим так называемый сервис «по возможности», который не гарантирует доставку сообщений адресату.
• При работе на хосте-отправителе данные от приложений поступают протоколу UDP через порт в виде сообщений. Протокол UDP добавляет к каждому отдельному сообщению свой 8-байтный заголовок, формируя из этих сообщений собственные протокольные единицы, называемые UDPдейтаграммами, и передает их нижележащему протоколу IP.
• Каждая дейтаграмма переносит отдельное пользовательское сообщение. Сообщения могут иметь различную длину, не превышающую однако длину поля данных протокола IP, которое, в свою очередь, ограничено размером кадра технологии нижнего уровня.
• Если буфер UDP переполняется, то сообщение приложения отбрасывается.
Заголовок UDP Состоит из четырех 2-байтных полей:
• номер UDP-порта отправителя;
• номер UDP-порта получателя;
• контрольная сумма;
• длина дейтаграммы.
Протокол UDP только диагностирует, но не исправляет ошибки. Если контрольная сумма показывает, что в поле данных UDP-дейтаграммы произошла ошибка, протокол UDP просто отбрасывает поврежденную дейтаграмму.
Протокол TCP, логическое соединение
• Предназначен для передачи данных между приложениями. Основан на логическом соединении, что позволяет обеспечивать гарантированную доставку данных, используя в качестве инструмента ненадежный дейтаграммный сервис протокола IP.
• При работе на хосте-отправителе протокол TCP рассматривает информацию, поступающую к нему от прикладных процессов, как неструктурированный поток байтов.
• Поступающие данные буферизуются средствами TCP. Для передачи на сетевой уровень из буфера «вырезается» некоторая непрерывная часть данных, которая называется сегментом и снабжается заголовком.
• В отличие от UDP, который создает свои дейтаграммы на основе логически обособленных единиц данных — сообщений, генерируемых приложениями, TCP делит поток данных на сегменты без учета их смысла или внутренней структуры.
Логические соединения
• TCP использует метод продвижения данных с установлением логического соединения. Логическое соединение дает возможность участникам обмена следить за тем, чтобы данные не были потеряны, искажены или продублированы, а также чтобы они пришли к получателю в том порядке, в котором были отправлены.
• Протокол TCP устанавливает логические соединения между прикладными процессами, причем в каждом соединении участвуют только два процесса. TCPсоединение является дуплексным, то есть каждый из участников этого соединения может одновременно получать и отправлять данные.
При установлении логического соединения модули TCP договариваются между собой о параметрах процедуры обмена данными. В протоколе TCP каждая сторона соединения посылает противоположной стороне следующие параметры:
• максимальный размер сегмента, который она готова принимать;
• максимальный объем данных (возможно несколько сегментов), которые она разрешает другой стороне передавать в свою сторону, даже если та еще не получила квитанцию на предыдущую порцию данных (размер окна);
• начальный порядковый номер байта, с которого она начинает отсчет потока данных в рамках данного соединения. В результате переговорного процесса модулей TCP с двух сторон соединения определяются параметры соединения. Одни из них остаются постоянными в течение всего сеанса связи, а другие адаптивно изменяются.