
Ответы к ГОСу / Новая папка / 29
.doc29. Модель оптимального поведения потребителей на рынке товаров в условиях товарно-денежных отношений.
В основе модели лежит гипотеза о том, что потребители при заданных ценах на товары и заданном доходе стараются максимизировать уровень удовлетворения своих потребностей при выборе товара.
Исследуется поведение некоторой группы потребителей на рынке, на котором представлены n товаров, которые будем обозначать:
y = (y1 … yn) – набор товаров / услуг
р = (р1 … рn) – заданные цены на товары / услуги.
u(y) – целевая функция потребления. Представляет собой критерий. Для ее построения нужны маркетинговые исследования. Она отвечает на вопрос, что такое хорошо и плохо для потребителя, т.е. определяет предпочтения потребителя
D – доход потребителя, может представляться как средний доход для изучаемой группы потребителей.
Тогда задача имеет вид:
Графическая интерпретация для случая двух товаров:
Линии уровня имеют такой вид, так как чем больше потребитель потребляет товар, тем менее предпочтительным он становится
Присутствующий в модели принцип оптимального поведения потребителей естественно не стоит понимать, как будто потребитель перед покупкой делает вычисления на основании свойств товаров.
Эта модель предназначена для выявления тенденции поведения потребителей.
В эту модель добавляют ограничения на объем производства, так как он может быть выше спрос. Особым моментом модели является учет денежных сбережений. Существует 2 способа решения проблемы:
-
денежные сбережения рассматриваются как особое потребительское благо, которое имеет свою общественную полезность.
-
Предполагается, что имеется возможность заранее оценить величину сбережений. Тогда величина дохода D рассматривается в модели как некоторая часть сбережений, которую потребитель готов потратить.
Для исследования свойств модели (1)-(3) используется метод множителей Лагранжа.
1.
Обозначим
,
где
.
Тогда получим:
2.
Если
– товар потребляется, то
,
тогда
Из данного соотношения следует, что для потребляемых товаров отношения предельных (общественных) полезностей к ценам должны быть одинаковыми.
если k,l:
,
то
данное равенство показывает, что для максимизации уровня своего потребления потребитель может выбирать товары так, чтобы отношение предельных полезностей совпадало с уровнем цен.
3.
если
,
то
То есть для достижения максимального удовлетворения необходимо потратить весь запас денежных средств.
Основными направлениями использования модели являются
1. прогнозирование покупательского спроса в зависимости от цен и доходов,
2. регулирование цен и доходов для сбалансированности спроса и предложения.
Возможна следующая постановка вопроса: известен некоторый набор товаров у0, которые могут быть реализованы. Требуется установить такие цены и общественный доход, чтобы спрос потребителей соответствовал товарному предложению. Опираясь на выведенные условия оптимальности:
.
Если
Опираясь на условия оптимальности, сформулируем задачу нахождения значения цен и дохода, балансирующих спрос и предложение:
,
i
= 1,n1
(n1-число
реализуемых продуктов).
Система включает
(n1+1)
уравнение, (n1+2)
переменные: рi
– цены, D
– доход,
– множ-ль Лагранжа.
Если зафиксировать 1 из этих переменных, то получим одинаковое количество и уравнений, и неизвестных = (n1+1), т.е. система уравнений разрешима.