
К курсачу / Dyadchenko_Kotiev_Naumov
.pdf
ɆȽɌɍ ɢɦ. ɇ.ɗ. Ȼɚɭɦɚɧɚ, ɤɚɮɟɞɪɚ «Ƚɭɫɟɧɢɱɧɵɟ ɦɚɲɢɧɵ»
Ⱦɹɞɱɟɧɤɨ Ɇ.Ƚ., Ʉɨɬɢɟɜ Ƚ.Ɉ., ɇɚɭɦɨɜ ȼ.ɇ.
Ɉɫɧɨɜɵ ɪɚɫɱɟɬɚ ɫɢɫɬɟɦ ɩɨɞɪɟɫɫɨɪɢɜɚɧɢɹ ɝɭɫɟɧɢɱɧɵɯ ɦɚɲɢɧ ɧɚ ɗȼɆ
ɍɱɟɛɧɨɟ ɩɨɫɨɛɢɟ ɩɨ ɤɭɪɫɭ «Ɍɟɨɪɢɹ ɯɨɞɨɜɵɯ ɫɢɫɬɟɦ ɝɭɫɟɧɢɱɧɵɯ ɦɚɲɢɧ»
Ɇɨɫɤɜɚ, 1999 ɝ.
2
ɋɨɞɟɪɠɚɧɢɟ
1. ɆȿɌɈȾ ɌȿɈɊȿɌɂɑȿɋɄɈȽɈ ɂɋɋɅȿȾɈȼȺɇɂə ɋɂɋɌȿɆɕ ɉɈȾɊȿɋɋɈɊɂȼȺɇɂə |
|
|
ȽɆ ɇȺ ɗɌȺɉȿ ɉɊɈȿɄɌɂɊɈȼȺɇɂə. ................................................................................... |
3 |
|
1.1 |
ɂɫɫɥɟɞɨɜɚɧɢɟ ɫɜɨɛɨɞɧɵɯ ɤɨɥɟɛɚɧɢɣ. ......................................................................................................................... |
3 |
1.2 |
ɋɤɨɪɨɫɬɧɵɟ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ ɝɭɫɟɧɢɱɧɨɣ ɦɚɲɢɧɵ................................................................................................. |
6 |
1.3 |
Ɇɨɞɟɥɢɪɨɜɚɧɢɟ ɞɜɢɠɟɧɢɹ ȽɆ ɩɨ ɬɪɚɫɫɚɦ ɫ ɩɪɨɮɢɥɟɦ, ɩɨɥɭɱɟɧɧɵɦ ɧɚ ɨɫɧɨɜɟ ɫɬɚɬɢɫɬɢɱɟɫɤɢɯ ɯɚɪɚɤɬɟ- |
|
ɪɢɫɬɢɤ ɬɪɚɫɫ. ......................................................................................................................................................................... |
8 |
2. ɆȺɌȿɆȺɌɂɑȿɋɄȺə ɆɈȾȿɅɖ....................................................................................... |
10 |
|
2.1 |
Ɉɫɧɨɜɧɵɟ ɞɨɩɭɳɟɧɢɹ. ................................................................................................................................................. |
10 |
2.2 |
Ɇɟɬɨɞ ɪɟɚɥɢɡɚɰɢɢ ɦɚɬɟɦɚɬɢɱɟɫɤɨɣ ɦɨɞɟɥɢ............................................................................................................ |
11 |
2.3 |
Ⱦɢɮɮɟɪɟɧɰɢɚɥɶɧɵɟ ɭɪɚɜɧɟɧɢɹ ɞɜɢɠɟɧɢɹ.............................................................................................................. |
12 |
3. ɉɊɈȽɊȺɆɆɇɕɃ ɄɈɆɉɅȿɄɋ «TRAK».......................................................................... |
16 |
3.1. Ɉɫɧɨɜɧɵɟ ɜɢɞɵ ɩɪɨɜɨɞɢɦɵɯ ɪɚɫɱɟɬɨɜ, ɩɨɥɭɱɚɟɦɵɟ ɪɟɡɭɥɶɬɚɬɵ..................................................................... |
16 |
3.2. ȼɜɨɞ ɢɫɯɨɞɧɵɯ ɞɚɧɧɵɯ............................................................................................................................................... |
16 |
3.2.1. Ɉɛɳɢɟ ɞɚɧɧɵɟ ɩɨ ɦɚɲɢɧɟ..................................................................................................................................... |
17 |
3.2.2. Ⱦɢɚɥɨɝɨɜɨɟ ɨɤɧɨ «Ʉɨɨɪɞɢɧɚɬɵ ɩɨɞɜɟɫɤɢ» .......................................................................................................... |
18 |
3.2.3. Ⱦɢɚɥɨɝɨɜɨɟ ɨɤɧɨ «ɏɚɪɚɤɬɟɪɢɫɬɢɤɢ ɪɟɫɫɨɪɵ»...................................................................................................... |
19 |
3.2.4. Ⱦɢɚɥɨɝɨɜɨɟ ɨɤɧɨ «ɏɚɪɚɤɬɟɪɢɫɬɢɤɚ ɞɟɦɩɮɟɪɚ» ................................................................................................... |
21 |
3.2.5. Ⱦɢɚɥɨɝɨɜɨɟ ɨɤɧɨ «ɏɚɪɚɤɬɟɪɢɫɬɢɤɢ ɤɚɬɤɚ» .......................................................................................................... |
22 |
3.2.6. Ⱦɢɚɥɨɝɨɜɨɟ ɨɤɧɨ «ɏɚɪɚɤɬɟɪɢɫɬɢɤɚ ɝɭɫɟɧɢɰɵ».................................................................................................... |
22 |
3.3. Ɋɚɫɱɟɬ ɫɜɨɛɨɞɧɵɯ ɤɨɥɟɛɚɧɢɣ. ɉɪɢɧɰɢɩ ɪɚɫɱɟɬɚ................................................................................................... |
23 |
3.3.1. Ɉɤɧɨ ɜɵɜɨɞɚ ɪɟɡɭɥɶɬɚɬɨɜ ɦɨɞɟɥɢɪɨɜɚɧɢɹ ɫɜɨɛɨɞɧɵɯ ɤɨɥɟɛɚɧɢɣ ɤɨɪɩɭɫɚ....................................................... |
23 |
3.3.2. ɉɪɨɝɪɚɦɦɚ ɩɪɨɫɦɨɬɪɚ ɝɪɚɮɢɤɨɜ RView............................................................................................................... |
24 |
3.4 Ɋɚɫɱɟɬ ɜɵɧɭɠɞɟɧɧɵɯ ɤɨɥɟɛɚɧɢɣ ȽɆ ....................................................................................................................... |
26 |
3.4.1. Ⱦɜɢɠɟɧɢɟ ɩɨ ɩɟɪɢɨɞɢɱɟɫɤɨɦɭ ɩɪɨɮɢɥɸ.............................................................................................................. |
26 |
3.4.2. Ⱦɜɢɠɟɧɢɟ ɩɨ ɫɥɭɱɚɣɧɨɦɭ ɩɪɨɮɢɥɸ ɢ ɩɪɟɨɞɨɥɟɧɢɟ ɩɪɟɩɹɬɫɬɜɢɣ...................................................................... |
29 |
3.5 ȼɫɩɨɦɨɝɚɬɟɥɶɧɵɟ ɩɪɨɝɪɚɦɦɵ................................................................................................................................... |
29 |
3.5.1 Ⱥɧɢɦɚɬɨɪ.................................................................................................................................................................. |
29 |
3.5.2. ɉɪɨɝɪɚɦɦɚ ɞɥɹ ɩɪɟɨɛɪɚɡɨɜɚɧɢɹ ɮɨɪɦɚɬɨɜ ɞɚɧɧɵɯ............................................................................................. |
30 |
3
1. Ɇɟɬɨɞ ɬɟɨɪɟɬɢɱɟɫɤɨɝɨ ɢɫɫɥɟɞɨɜɚɧɢɹ ɫɢɫɬɟɦɵ ɩɨɞɪɟɫɫɨɪɢɜɚɧɢɹ ȽɆ ɧɚ ɷɬɚɩɟ ɩɪɨɟɤɬɢɪɨɜɚɧɢɹ.
ɋɭɬɶ ɩɪɟɞɥɚɝɚɟɦɨɝɨ ɦɟɬɨɞɚ ɢɫɫɥɟɞɨɜɚɧɢɹ ɤɚɱɟɫɬɜɚ ɫɢɫɬɟɦɵ ɩɨɞɪɟɫɫɨɪɢɜɚɧɢɹ ȽɆ ɫɨɫɬɨɢɬ ɜ ɬɨɦ, ɱɬɨɛɵ ɞɚɬɶ ɜɨɡɦɨɠɧɨɫɬɶ ɪɚɡɪɚɛɨɬɱɢɤɭ ɧɚ ɷɬɚɩɟ ɩɪɨɟɤɬɢɪɨɜɚɧɢɹ ɦɨɞɟɥɢɪɨɜɚɬɶ ɧɚ ɗȼɆ ɞɜɢɠɟɧɢɟ ɢ ɨɰɟɧɢɜɚɬɶ ɩɨɞɜɟɫɤɭ ɛɭɞɭɳɟɣ ɦɚɲɢɧɵ ɩɨ ɬɟɦ ɤɪɢɬɟɪɢɹɦ, ɤɨɬɨɪɵɟ ɢɫɩɨɥɶɡɭɸɬɫɹ ɜ ɞɚɥɶɧɟɣɲɟɦ ɩɪɢ ɢɫɩɵɬɚɧɢɢ ɧɚɬɭɪɧɵɯ ɨɛɪɚɡ- ɰɨɜ, ɢ ɜɧɨɫɢɬɶ ɜ ɪɚɡɪɚɛɚɬɵɜɚɟɦɭɸ ɤɨɧɫɬɪɭɤɰɢɸ ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɟ ɤɨɪɪɟɤɬɢɜɵ.
Ɉɰɟɧɤɚ ɩɪɨɜɨɞɢɬɫɹ ɜ ɬɪɢ ɷɬɚɩɚ ɫ ɢɫɩɨɥɶɡɨɜɚɧɢɟɦ ɧɟɥɢɧɟɣɧɨɣ ɦɚɬɟɦɚɬɢɱɟɫɤɨɣ ɦɨɞɟɥɢ ɞɢɧɚɦɢɤɢ ɌɆ ɩɨ ɫɥɟɞɭɸɳɟɣ ɫɯɟɦɟ (ɪɢɫ. 1.1).
1.1 ɂɫɫɥɟɞɨɜɚɧɢɟ ɫɜɨɛɨɞɧɵɯ ɤɨɥɟɛɚɧɢɣ.
ɗɬɚɩ ɢɫɫɥɟɞɨɜɚɧɢɹ ɫɜɨɛɨɞɧɵɯ ɤɨɥɟɛɚɧɢɣ ɹɜɥɹɟɬɫɹ ɩɟɪɜɵɦ ɲɚɝɨɦ ɜ ɦɟɬɨɞɢɤɟ ɨɰɟɧɤɢ ɤɚɱɟɫɬɜɚ ɫɢɫɬɟɦɵ ɩɨɞɪɟɫɫɨɪɢɜɚɧɢɹ. Ɉɧ ɞɚɟɬ ɜɨɡɦɨɠɧɨɫɬɶ ɫɞɟɥɚɬɶ ɜɚɠɧɵɟ, ɯɨɬɹ ɢ ɧɟ ɨɤɨɧɱɚɬɟɥɶɧɵɟ ɜɵɜɨɞɵ ɨɛ ɨɛɳɟɦ ɭɪɨɜɧɟ ɫɢɫɬɟɦɵ ɩɨɞɪɟɫɫɨɪɢɜɚɧɢɹ. ɗɬɨɬ ɷɬɚɩ ɫɨɩɪɹɠɟɧ ɫ ɧɚɢɦɟɧɶɲɢɦɢ ɬɟɯɧɢɱɟɫɤɢɦɢ ɬɪɭɞɧɨɫɬɹɦɢ, ɚ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ ɫɨɛɫɬɜɟɧɧɵɯ ɤɨɥɟɛɚɧɢɣ ɢ ɫɬɚɬɢɱɟɫɤɢɯ ɯɚɪɚɤɬɟɪɢɫɬɢɤ ɢɫɩɨɥɶɡɭɸɬɫɹ ɞɥɹ ɨɰɟɧɤɢ ɤɚɱɟɫɬɜɚ ɫɢɫɬɟɦɵ ɩɨɞɪɟɫɫɨɪɢɜɚɧɢɹ ɧɚ ɩɪɚɤɬɢɤɟ ɞɥɢɬɟɥɶɧɨɟ ɜɪɟɦɹ, ɩɨɷɬɨɦɭ ɜɵɪɚ- ɛɨɬɚɧɵ ɬɪɟɛɨɜɚɧɢɹ, ɧɟɜɵɩɨɥɧɟɧɢɟ ɤɨɬɨɪɵɯ, ɤɚɤ ɩɨɤɚɡɵɜɚɟɬ ɨɩɵɬ ɩɪɨɟɤɬɢɪɨɜɚ- ɧɢɹ, ɞɟɥɚɟɬ ɧɟɜɨɡɦɨɠɧɵɦ ɫɨɛɥɸɞɟɧɢɟ ɬɪɟɛɨɜɚɧɢɣ, ɩɪɟɞɴɹɜɥɹɟɦɵɯ ɤ ɩɨɞɜɟɫɤɟ ȽɆ ɧɚ ɩɨɫɥɟɞɭɸɳɢɯ ɷɬɚɩɚɯ ɢɫɫɥɟɞɨɜɚɧɢɹ.
ɉɪɢɜɟɞɟɧɧɵɟ ɧɢɠɟ ɪɟɤɨɦɟɧɞɭɟɦɵɟ ɡɧɚɱɟɧɢɹ ɩɨɥɭɱɟɧɵ ɢɫɯɨɞɹ ɢɡ ɨɩɵɬɚ ɩɪɨɟɤɬɢ- ɪɨɜɚɧɢɹ ɛɵɫɬɪɨɯɨɞɧɵɯ ɝɭɫɟɧɢɱɧɵɯ ɦɚɲɢɧ (ȻȽɆ). ȼɧɟ ɷɬɢɯ ɡɧɚɱɟɧɢɣ ɩɨɥɭɱɢɬɶ ɭɞɨɜɥɟɬɜɨɪɢɬɟɥɶɧɵɟ ɩɨɤɚɡɚɬɟɥɢ ɩɥɚɜɧɨɫɬɢ ɯɨɞɚ ɩɪɨɛɥɟɦɚɬɢɱɧɨ.
ȼ ɯɨɞɟ ɪɚɫɱɟɬɨɜ ɨɩɪɟɞɟɥɹɟɬɫɹ ɫɬɚɬɢɱɟɫɤɨɟ ɩɨɥɨɠɟɧɢɟ ɢ ɦɨɞɟɥɢɪɭɸɬɫɹ ɡɚɬɭɯɚɸ- ɳɢɟ ɤɨɥɟɛɚɧɢɹ ɤɨɪɩɭɫɚ ɦɚɲɢɧɵ, ɩɚɪɚɦɟɬɪɵ ɤɨɬɨɪɵɯ ɹɜɥɹɸɬɫɹ ɪɟɡɭɥɶɬɚɬɚɦɢ ɞɥɹ ɷɬɨɝɨ ɷɬɚɩɚ:
1.ɉɟɪɢɨɞ ɫɜɨɛɨɞɧɵɯ ɩɪɨɞɨɥɶɧɨ-ɭɝɥɨɜɵɯ ɤɨɥɟɛɚɧɢɣ ɤɨɪɩɭɫɚ ɌM ɞɨɥɠɟɧ ɧɚɯɨ- ɞɢɬɶɫɹ ɜ ɩɪɟɞɟɥɚɯ 1,2-1,8 ɫ ɩɨ ɭɫɥɨɜɢɹɦ ɩɥɚɜɧɨɫɬɢ ɯɨɞɚ ɢ ɭɫɬɨɣɱɢɜɨɫɬɢ ɤ ɞɟɣɫɬɜɢɸ ɩɪɨɞɨɥɶɧɵɯ ɫɢɥ;
2.ɂɧɬɟɧɫɢɜɧɨɫɬɶ ɡɚɬɭɯɚɧɢɹ ɩɪɨɞɨɥɶɧɨ-ɭɝɥɨɜɵɯ ɤɨɥɟɛɚɧɢɣ ɫɥɭɠɢɬ ɩɨɤɚɡɚɬɟ- ɥɟɦ ɷɮɮɟɤɬɢɜɧɨɫɬɢ ɚɦɨɪɬɢɡɚɬɨɪɨɜ ɢ ɞɨɥɠɧɚ ɧɚɯɨɞɢɬɶɫɹ ɜ ɩɪɟɞɟɥɚɯ 10y17 ɞɥɹ ɨɛɟɫɩɟɱɟɧɢɹ ɧɟɨɛɯɨɞɢɦɨɝɨ ɝɚɲɟɧɢɹ ɤɨɥɟɛɚɧɢɣ ɢ ɩɥɚɜɧɨɫɬɢ ɯɨɞɚ;
3.ɉɨɬɟɧɰɢɚɥɶɧɚɹ ɷɧɟɪɝɢɹ ɩɨɞɜɟɫɤɢ — ɯɚɪɚɤɬɟɪɢɡɭɟɬ ɷɧɟɪɝɨɟɦɤɨɫɬɶ ɩɨɞɜɟɫɤɢ ɢ ɞɥɹ ɫɨɜɪɟɦɟɧɧɵɯ ɦɚɲɢɧ ɞɨɥɠɧɚ ɫɨɫɬɚɜɥɹɬɶ ɧɟ ɦɟɧɟɟ 0,4y0,6ɦ;
4.ɋɨɨɬɧɨɲɟɧɢɟ ɩɨɥɧɨɝɨ ɢ ɫɬɚɬɢɱɟɫɤɨɝɨ ɯɨɞɨɜ ɤɚɬɤɨɜ. ȿɫɥɢ ɫɬɚɬɢɱɟɫɤɢɣ ɯɨɞ ɫɨɫɬɚɜɥɹɟɬ ɛɨɥɟɟ ɬɪɟɬɢ ɩɨɥɧɨɝɨ ɯɨɞɚ ɤɚɬɤɚ, ɬɨ ɯɚɪɚɤɬɟɪɢɫɬɢɤɚ ɩɨɞɜɟɫɤɢ ɜɵ- ɛɪɚɧɚ ɧɟɭɞɚɱɧɨ, ɢ ɩɪɢ ɞɜɢɠɟɧɢɢ ɤɚɬɨɤ ɛɭɞɟɬ ɞɨɫɬɢɝɚɬɶ ɨɬɛɨɣɧɢɤɚ (ɩɪɨɛɨɣ ɩɨɞɜɟɫɤɢ), ɨɫɨɛɟɧɧɨ ɜ ɧɨɫɨɜɨɣ ɱɚɫɬɢ ɦɚɲɢɧɵ;
5.ɋɬɚɬɢɱɟɫɤɢɣ ɯɨɞ ɤɚɬɤɨɜ ɢ ɞɢɮɮɟɪɟɧɬ - ɞɥɹ ɫɩɪɚɜɤɢ.
Ⱦɥɹ ɩɨɥɭɱɟɧɢɹ ɪɚɫɱɟɬɧɵɯ ɦɨɞɟɥɢɪɭɸɬɫɹ ɫɜɨɛɨɞɧɵɟ ɡɚɬɭɯɚɸɳɢɟ ɤɨɥɟɛɚɧɢɹ ȽɆ ɧɚ ɪɨɜɧɨɦ ɝɨɪɢɡɨɧɬɚɥɶɧɨɦ ɨɫɧɨɜɚɧɢɢ, ɩɟɪɜɨɧɚɱɚɥɶɧɨ ɜɵɜɟɞɟɧɧɨɣ ɢɡ ɫɨɫɬɨɹɧɢɹ ɫɬɚɬɢɱɟɫɤɨɝɨ ɪɚɜɧɨɜɟɫɢɹ. ɇɚɱɚɥɶɧɨɟ ɩɨɥɨɠɟɧɢɟ ɤɨɪɩɭɫɚ ɦɚɲɢɧɵ ɨɩɪɟɞɟɥɹɟɬɫɹ ɤɚɤ ɩɨɥɨɠɟɧɢɟ ɦɚɤɫɢɦɚɥɶɧɨ ɜɨɡɦɨɠɧɨɝɨ ɞɢɮɮɟɪɟɧɬɚ ɛɟɡ ɨɬɪɵɜɚ ɤɚɬɤɨɜ ɨɬ ɨɫɧɨ- ɜɚɧɢɹ. ɉɪɢ ɷɬɨɦ ɨɞɢɧ ɢɡ ɤɪɚɣɧɢɯ ɤɚɬɤɨɜ ɩɨɞɜɟɫɤɢ ɩɨɥɧɨɫɬɶɸ ɜɵɛɢɪɚɟɬ ɞɢɧɚɦɢɱɟ- ɫɤɢɣ ɯɨɞ, ɚ ɞɪɭɝɨɣ - ɧɚɯɨɞɢɬɫɹ ɜ ɜɵɜɟɲɟɧɧɨɦ ɫɨɫɬɨɹɧɢɢ (ɪɢɫ 1.2). Ɍɚɤɨɟ ɧɚɱɚɥɶɧɨɟ ɩɨɥɨɠɟɧɢɟ ɨɛɟɫɩɟɱɢɜɚɟɬ ɜɨɡɛɭɠɞɟɧɢɟ ɩɪɨɞɨɥɶɧɨ-ɭɝɥɨɜɵɯ ɤɨɥɟɛɚɧɢɣ, ɩɪɟɞɫɬɚɜ-

4
Ȼɥɨɤ-ɫɯɟɦɚ ɦɟɬɨɞɚ ɢɫɫɥɟɞɨɜɚɧɢɹ ɫɢɫɬɟɦ ɩɨɞɪɟɫɫɨɪɢɜɚɧɢɹ ɝɭɫɟɧɢɱɧɵɯ ɦɚɲɢɧ ɧɚ ɷɬɚɩɟ ɩɪɨɟɤɬɢɪɨɜɚɧɢɹ
ɇɚɱɚɥɨ
ȼɜɨɞ ɢɫɯɨɞɧɵɯɞɚɧɧɵɯ
Ɋɚɫɱɟɬ ɫɬɚɬɢɱɟɫɤɢɯɯɚɪɚɤɬɟɪɢɫɬɢɤ ɢ ɢɫɫɥɟɞɨɜɚɧɢɟ ɫɜɨɛɨɞɧɵɯɤɨɥɟɛɚɧɢɣ
ȼɵɜɨɞ ɪɟɡɭɥɶɬɚɬɨɜ: ɩɚɪɚɦɟɬɪɵɫɜɨɛɨɞɧɵɯɤɨɥɟɛɚɧɢɣɢ ɫɬɚɬɢɱɟɫɤɢɟ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ Ʉɨɪɪɟɤɬɢɪɨɜɤɚ ɢɫɯɨɞɧɵɯ
ɞɚɧɧɵɯ
ɗɤɫɩɟɪɬɧɚɹ ɨɰɟɧɤɚ
ɧɟɬ
ɍɫɥɨɜɢɹ
ɫɨɛɥɸɞɟɧɵ
ɞɚ
ɂɫɫɥɟɞɨɜɚɧɢɟɜɵɧɭɠɞɟɧɧɵɯ ɤɨɥɟɛɚɧɢɣ
Ⱦɜɢɠɟɧɢɟɩɨ ɩɟɪɢɨɞɢɱɟɫɤɨɦɭ ɩɪɨɮɢɥɸ. ɉɨɫɬɪɨɟɧɢɟɫɤɨɪɨɫɬɧɵɯ ɯɚɪɚɤɬɟɪɢɫɬɢɤ.
ȼɵɜɨɞ ɪɟɡɭɥɶɬɚɬɨɜ: ɫɤɨɪɨɫɬɧɵɟɯɚɪɚɤɬɟɪɢɫɬɢɤɢ
ɗɤɫɩɟɪɬɧɚɹ ɨɰɟɧɤɚ
ɧɟɬ
ɍɫɥɨɜɢɹ
ɫɨɛɥɸɞɟɧɵ
ɞɚ
ɂɫɫɥɟɞɨɜɚɧɢɟɤɨɥɟɛɚɧɢɣɌɆɩɪɢɞɜɢɠɟɧɢɢɩɨ ɬɪɚɫɫɚɦɫɨ ɫɥɭɱɚɣɧɵɦɩɪɨɮɢɥɟɦ
ȼɵɜɨɞ ɪɟɡɭɥɶɬɚɬɨɜ: ɫɪɟɞɧɟɤɜɚɞɪɚɬɢɱɟɫɤɢɟ ɭɫɤɨɪɟɧɢɹ, |
ɱɢɫɥɨ ɩɪɨɛɨɟɜ, ɞɨɩɭɫɬɢɦɚɹ ɫɤɨɪɨɫɬɶ |
Ʉɨɧɟɰ
Ɋɢɫ. 1.1

5
zc
ɉɨɥɨɠɟɧɢɟ ɫɬɚɬɢɱɟɫɤɨɝɨ |
ɉɨɥɨɠɟɧɢɟ ɧɚɱɚɥɶɧɨɝɨ |
ɪɚɜɧɨɜɟɫɢɹ |
ɨɬɤɥɨɧɟɧɢɹ |
zc0
Mɧɚɱ M0
zcɧɚɱ
x
Ɋɢɫ. 1.2
ɥɹɸɳɢɯ ɨɫɧɨɜɧɨɣ ɢɧɬɟɪɟɫ.
ɉɪɢ ɦɨɞɟɥɢɪɨɜɚɧɢɢ ɨɩɨɪɧɵɟ ɤɚɬɤɢ ɫɱɢɬɚɸɬɫɹ ɧɟɪɚɡɪɵɜɧɨ ɫɨɟɞɢɧɟɧɧɵɦɢ ɫ ɝɪɭɧ- ɬɨɦ, ɱɬɨ ɢɫɤɥɸɱɚɟɬ ɢɯ ɨɬɪɵɜ ɢ ɜɵɤɥɸɱɚɟɬ ɢɡ ɪɚɫɱɟɬɚ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ ɲɢɧ ɢ ɦɚɫ- ɫɵ ɤɚɬɤɨɜ. ɗɬɨ ɫɞɟɥɚɧɨ ɞɥɹ ɬɨɝɨ, ɱɬɨɛɵ ɩɪɢɛɥɢɡɢɬɶ ɭɫɥɨɜɢɹ ɦɨɞɟɥɢɪɨɜɚɧɢɹ ɤ ɪɟ- ɚɥɶɧɵɦ ɭɫɥɨɜɢɹɦ ɩɪɨɜɟɞɟɧɢɹ ɩɨɞɨɛɧɵɯ ɷɤɫɩɟɪɢɦɟɧɬɨɜ, ɚ ɬɚɤɠɟ ɢɫɤɥɸɱɢɬɶ ɜɵɫɨ- ɤɨɱɚɫɬɨɬɧɵɟ ɤɨɥɟɛɚɧɢɹ ɤɨɪɩɭɫɚ ɧɚ ɲɢɧɚɯ ɤɚɬɤɨɜ, ɭɱɟɬ ɤɨɬɨɪɵɯ ɡɚɬɪɭɞɧɢɬ ɚɧɚɥɢɡ ɡɚɩɢɫɟɣ ɤɨɥɟɛɚɧɢɣ, ɭɜɟɥɢɱɢɬ ɜɪɟɦɹ ɦɨɞɟɥɢɪɨɜɚɧɢɹ, ɧɨ ɫɭɳɟɫɬɜɟɧɧɨ ɧɟ ɢɡɦɟɧɢɬ ɤɚɪɬɢɧɭ ɤɨɥɟɛɚɧɢɣ. Ɇɨɞɟɥɢɪɨɜɚɧɢɟ ɩɪɨɞɨɥɠɚɟɬɫɹ ɞɨ ɦɨɦɟɧɬɚ, ɭɫɥɨɜɧɨ ɩɪɢɧɢ- ɦɚɟɦɨɝɨ ɡɚ ɦɨɦɟɧɬ ɞɨɫɬɢɠɟɧɢɹ ɫɬɚɬɢɱɟɫɤɨɝɨ ɪɚɜɧɨɜɟɫɢɹ ɤɨɪɩɭɫɚ ɌɆ. ɗɬɨɬ ɦɨ- ɦɟɧɬ ɨɩɪɟɞɟɥɹɟɬɫɹ ɤɚɤ ɫɨɫɬɨɹɧɢɟ, ɜ ɤɨɬɨɪɨɦ ɨɞɧɨɜɪɟɦɟɧɧɨ ɦɚɥɵ ɫɤɨɪɨɫɬɢ ɢ ɭɫɤɨ- ɪɟɧɢɹ ɜɟɪɬɢɤɚɥɶɧɵɯ ɢ ɩɪɨɞɨɥɶɧɨ-ɭɝɥɨɜɨɣ ɤɨɥɟɛɚɧɢɣ ɤɨɪɩɭɫɚ. Ʉɨɧɤɪɟɬɧɵɟ ɡɧɚɱɟ- ɧɢɹ ɦɨɝɭɬ ɫɨɫɬɚɜɥɹɬɶ, ɧɚɩɪɢɦɟɪ, ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ 0,05 ɦ/c ɢ 0,05 ɪɚɞ/ɫ ɞɥɹ ɫɤɨɪɨ- ɫɬɟɣ ɢ 0,01 ɦ/ɫ2 ɢ 0,01 ɪɚɞ/ɫ2 ɞɥɹ ɭɫɤɨɪɟɧɢɣ.
ɇɚ ɪɢɫɭɧɤɟ 1.3 ɩɪɢɜɟɞɟɧ ɩɪɢɦɟɪ ɡɚɩɢɫɢ ɜɟɪɬɢɤɚɥɶɧɵɯ ɤɨɥɟɛɚɧɢɣ ɰɟɧɬɪɚ ɦɚɫɫ ɦɚɲɢɧɵ. Ⱥɧɚɥɢɡ ɤɨɥɟɛɚɧɢɣ ɫɨɫɬɨɢɬ ɢɡ ɫɥɟɞɭɸɳɢɯ ɲɚɝɨɜ:
Ɉɩɪɟɞɟɥɹɟɬɫɹ ɫɬɚɬɢɱɟɫɤɨɟ ɩɨɥɨɠɟɧɢɟ ɤɨɪɩɭɫɚ ɌɆ ɤɚɤ ɩɨɫɥɟɞɧɹɹ ɬɨɱɤɚ, ɪɚɫɫɱɢ- ɬɚɧɧɚɹ ɜ ɩɪɨɰɟɫɫɟ ɦɨɞɟɥɢɪɨɜɚɧɢɹ ɞɚɧɧɨɣ ɩɟɪɟɦɟɧɧɨɣ. Ɍɚɤɢɦ ɩɭɬɟɦ ɨɩɪɟɞɟɥɹɸɬɫɹ ɡɧɚɱɟɧɢɹ ɜɟɪɬɢɤɚɥɶɧɨɣ ɤɨɨɪɞɢɧɚɬɵ ɰɟɧɬɪɚ ɦɚɫɫ zc0 ɢ ɞɢɮɮɟɪɟɧɬɚ ɤɨɪɩɭɫɚ ɜ ɩɨ- ɥɨɠɟɧɢɢ ɫɬɚɬɢɱɟɫɤɨɝɨ ɪɚɜɧɨɜɟɫɢɹ M0.
ɉɨɫɥɟ ɨɩɪɟɞɟɥɟɧɢɹ ɩɨɥɨɠɟɧɢɹ ɪɚɜɧɨɜɟɫɢɹ ɫɬɚɧɨɜɢɬɫɹ ɜɨɡɦɨɠɧɵɦ ɜɵɞɟɥɢɬɶ ɪɚɡ- ɦɚɯɢ ɤɨɥɟɛɚɧɢɣ ɢ ɜɵɱɢɫɥɢɬɶ ɢɯ ɩɟɪɢɨɞ. Ⱦɥɹ ɷɬɨɝɨ ɨɩɪɟɞɟɥɹɟɬɫɹ ɜɪɟɦɹ ɨɬ ɦɨɦɟɧɬɚ ɞɨɫɬɢɠɟɧɢɹ ɨɞɧɨɝɨ ɷɤɫɬɪɟɦɭɦɚ ɞɨ ɞɪɭɝɨɝɨ, ɥɟɠɚɳɟɝɨ ɩɨ ɞɪɭɝɭɸ ɫɬɨɪɨɧɭ ɩɨɥɨɠɟ- ɧɢɹ ɪɚɜɧɨɜɟɫɢɹ (ɪɢɫ 1.3). Ⱦɥɹ ɩɨɜɵɲɟɧɢɹ ɬɨɱɧɨɫɬɢ ɪɟɡɭɥɶɬɚɬɚ ɭɫɪɟɞɧɹɸɬɫɹ ɞɚɧ- ɧɵɟ ɩɨ ɜɫɟɦ ɷɤɫɬɪɟɦɭɦɚɦ, ɨɬɪɚɠɟɧɧɵɦ ɜ ɡɚɩɢɫɢ ɤɨɥɟɛɚɧɢɣ. ɍɞɜɨɟɧɧɨɟ ɜɪɟɦɹ ɨɞ- ɧɨɝɨ ɪɚɡɦɚɯɚ ɤɨɥɟɛɚɧɢɣ ɩɪɟɞɫɬɚɜɥɹɟɬ ɫɨɛɨɣ ɩɟɪɢɨɞ ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɯ ɤɨɥɟɛɚɧɢɣ - ɜɟɪɬɢɤɚɥɶɧɵɯ ɢɥɢ ɭɝɥɨɜɵɯ – Tz ɢ TM ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ.

6
Ⱦɥɹ ɨɩɪɟɞɟɥɟɧɢɹ ɢɧɬɟɧɫɢɜɧɨɫɬɢ ɡɚɬɭɯɚɧɢɹ ɤɨɥɟɛɚɧɢɣ ɢɡɦɟɪɹɸɬɫɹ ɨɬɤɥɨɧɟɧɢɹ ɤɨ- ɨɪɞɢɧɚɬ ɨɬ ɩɨɥɨɠɟɧɢɹ ɫɬɚɬɢɱɟɫɤɨɝɨ ɪɚɜɧɨɜɟɫɢɹ ɜ ɬɨɱɤɚɯ ɷɤɫɬɪɟɦɭɦɨɜ, ɨɩɪɟɞɟ- ɥɟɧɧɵɯ ɜ ɩɪɟɞɵɞɭɳɟɦ ɲɚɝɟ (ɪɢɫ 1.3). ɂɧɬɟɧɫɢɜɧɨɫɬɶ ɡɚɬɭɯɚɧɢɹ ɜɵɱɢɫɥɹɟɬɫɹ ɩɨ ɞɜɭɦ ɫɨɫɟɞɧɢɦ ɷɤɫɬɪɟɦɭɦɚɦ ɫ ɚɦɩɥɢɬɭɞɚɦɢ A1 ɢ A2 ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ, ɤɚɤ:
Q = §¨© A1 ·¸¹2 .
A 2
Ɉɬɧɨɫɢɬɟɥɶɧɚɹ ɩɨɬɟɧɰɢɚɥɶɧɚɹ ɷɧɟɪɝɢɹ ɩɨɞɜɟɫɤɢ ɦɨɠɟɬ ɛɵɬɶ ɜɵɱɢɫɥɟɧɚ ɧɟɡɚɜɢ- ɫɢɦɨ ɨɬ ɦɨɞɟɥɢɪɨɜɚɧɢɹ ɢ ɚɧɚɥɢɡɚ ɤɨɥɟɛɚɧɢɣ ɤɨɪɩɭɫɚ ɌɆ ɩɨ ɮɨɪɦɭɥɟ:
|
N |
f• |
|
O = |
2¦K |
³Pɍi (f)df |
, ɝɞɟ |
i=1 |
0 |
||
|
m0g |
||
|
|
|
Pɍi(f) - ɡɚɜɢɫɢɦɨɫɬɶ ɭɩɪɭɝɨɣ ɫɢɥɵ ɜ ɪɟɫɫɨɪɟ i-ɝɨ ɤɚɬɤɚ ɨɬ ɨɬɧɨɫɢɬɟɥɶɧɨɝɨ ɯɨɞɚ
ɤɚɬɤɚ fi;
NK - ɱɢɫɥɨ ɤɚɬɤɨɜ ɩɨ ɛɨɪɬɭ;
m0 - ɦɚɫɫɚ ɩɨɞɪɟɫɫɨɪɟɧɧɨɝɨ ɤɨɪɩɭɫɚ; g - ɭɫɤɨɪɟɧɢɟ ɫɜɨɛɨɞɧɨɝɨ ɩɚɞɟɧɢɹ.
zc
A1
A2
zc0
Ɍ/2
zcɧɚɱ
t
0
Ɋɢɫ 1.3
1.2 ɋɤɨɪɨɫɬɧɵɟ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ ɝɭɫɟɧɢɱɧɨɣ ɦɚɲɢɧɵ.
ɗɬɚɩ ɢɫɫɥɟɞɨɜɚɧɢɹ ɜɵɧɭɠɞɟɧɧɵɯ ɤɨɥɟɛɚɧɢɣ ɤɨɪɩɭɫɚ ȽɆ ɞɚɟɬ ɧɚɢɛɨɥɟɟ ɨɛɳɭɸ ɢ ɩɨɥɧɭɸ ɢɧɮɨɪɦɚɰɢɸ, ɩɨɡɜɨɥɹɸɳɭɸ ɫɭɞɢɬɶ ɨ ɤɚɱɟɫɬɜɟ ɫɢɫɬɟɦɵ ɩɨɞɪɟɫɫɨɪɢɜɚɧɢɹ. Ⱦɚɧɧɵɣ ɷɬɚɩ, ɨɫɨɛɟɧɧɨ ɩɨɥɭɱɟɧɢɟ ɫɤɨɪɨɫɬɧɵɯ ɯɚɪɚɤɬɟɪɢɫɬɢɤ ɩɨɞɜɟɫɤɢ, ɫɨɩɪɹɠɟɧ ɫ ɧɚɢɛɨɥɶɲɢɦɢ ɡɚɬɪɚɬɚɦɢ ɦɚɲɢɧɧɨɝɨ ɜɪɟɦɟɧɢ. Ʉ ɯɚɪɚɤɬɟɪɢɫɬɢɤɚɦ, ɨɰɟɧɢɜɚɟɦɵɦ ɧɚ ɷɬɚɩɟ ɢɫɫɥɟɞɨɜɚɧɢɹ ɜɵɧɭɠɞɟɧɧɵɯ ɤɨɥɟɛɚɧɢɣ, ɨɬɧɨɫɹɬɫɹ:
- ɜɢɞ ɫɤɨɪɨɫɬɧɵɯ ɯɚɪɚɤɬɟɪɢɫɬɢɤ ɢ ɤɨɧɤɪɟɬɧɵɟ ɡɧɚɱɟɧɢɹ ɜɵɫɨɬ ɩɟɪɢɨɞɢɱɟɫɤɢɯ ɧɟɪɨɜɧɨɫɬɟɣ, ɩɪɟɨɞɨɥɟɜɚɟɦɵɯ ɌɆ ɛɟɡ ɞɨɫɬɢɠɟɧɢɹ ɧɚ ɦɟɫɬɟ ɦɟɯɚɧɢɤɚ-ɜɨɞɢɬɟɥɹ ɩɪɟɞɟɥɶɧɵɯ ɜɟɪɬɢɤɚɥɶɧɵɯ ɭɫɤɨɪɟɧɢɣ ɭɫɤɨɪɟɧɢɣ (ɧɚɩɪɢɦɟɪ, 3,5g, ɝɞɟ g - ɭɫɤɨɪɟ- ɧɢɟ ɫɜɨɛɨɞɧɨɝɨ ɩɚɞɟɧɢɹ) ɢ "ɩɪɨɛɨɟɜ" ɩɨɞɜɟɫɤɢ;

7
-ɚɦɩɥɢɬɭɞɧɨ-ɱɚɫɬɨɬɧɵɟ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ ɤɨɥɟɛɚɧɢɣ ɤɨɪɩɭɫɚ;
-ɚɦɩɥɢɬɭɞɧɨ-ɱɚɫɬɨɬɧɚɹ ɯɚɪɚɤɬɟɪɢɫɬɢɤɚ ɩɨ ɭɫɤɨɪɟɧɢɹɦ "ɬɪɹɫɤɢ" (ɜɵɫɨɤɨɱɚɫɬɨɬ- ɧɵɦ ɜɟɪɬɢɤɚɥɶɧɵɦ ɭɫɤɨɪɟɧɢɹɦ).
ɋɤɨɪɨɫɬɧɚɹ ɯɚɪɚɤɬɟɪɢɫɬɢɤɚ - ɷɬɨ ɡɚɜɢɫɢɦɨɫɬɶ ɜɵɫɨɬɵ ɧɟɪɨɜɧɨɫɬɢ, ɩɪɟɨɞɨɥɟɜɚɟ- ɦɨɣ ȽɆ ɛɟɡ ɞɨɫɬɢɠɟɧɢɹ ɤɨɧɬɪɨɥɶɧɨɝɨ ɩɚɪɚɦɟɬɪɚ, ɨɬ ɫɤɨɪɨɫɬɢ ɦɚɲɢɧɵ ɩɪɢ ɞɜɢ- ɠɟɧɢɢ ɩɨ ɩɟɪɢɨɞɢɱɟɫɤɢɦ (ɝɚɪɦɨɧɢɱɟɫɤɢɦ) ɧɟɪɨɜɧɨɫɬɹɦ.
Ɉɛɵɱɧɨ ɫɬɪɨɹɬɫɹ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ ɩɨ «ɩɪɨɛɨɸ» ɩɨɞɜɟɫɤɢ (ɞɨɫɬɢɠɟɧɢɟ ɤɚɬɤɨɦ ɨɝ- ɪɚɧɢɱɢɬɟɥɹ ɯɨɞɚ) ɢ ɜɟɪɬɢɤɚɥɶɧɵɦ ɭɫɤɨɪɟɧɢɹɦ 3,5g ɧɚ ɦɟɫɬɟ ɦɟɯɚɧɢɤɚ-ɜɨɞɢɬɟɥɹ ɧɚ
ɞɥɢɧɚɯ ɧɟɪɨɜɧɨɫɬɟɣ 0,5Ly4L, ɝɞɟ L - ɛɚɡɚ ɦɚɲɢɧɵ (ɞɥɢɧɚ ɨɩɨɪɧɨɣ ɩɨɜɟɪɯɧɨɫɬɢ). Ʉɪɨɦɟ ɬɨɝɨ, ɧɚ ɷɬɨɦ ɷɬɚɩɟ ɨɩɪɟɞɟɥɹɟɬɫɹ ɚɦɩɥɢɬɭɞɧɨ-ɱɚɫɬɨɬɧɚɹ ɯɚɪɚɤɬɟɪɢɫɬɢɤɚ ɩɨ ɜɟɪɬɢɤɚɥɶɧɵɦ ɭɫɤɨɪɟɧɢɹɦ «ɬɪɹɫɤɢ» ɧɚ ɦɟɫɬɟ ɦɟɯɚɧɢɤɚ-ɜɨɞɢɬɟɥɹ ɧɚ ɩɟɪɢɨɞɢɱɟ- ɫɤɢɯ ɧɟɪɨɜɧɨɫɬɹɯ ɦɚɥɨɣ ɞɥɢɧɵ.
Ⱦɥɹ ɩɨɫɬɪɨɟɧɢɹ ɫɤɨɪɨɫɬɧɵɯ ɯɚɪɚɤɬɟɪɢɫɬɢɤ ɩɨ «ɩɪɨɛɨɸ» ɢ ɭɫɤɨɪɟɧɢɹɦ 3,5g ɧɚ ɦɟɫɬɟ ɜɨɞɢɬɟɥɹ ɦɨɞɟɥɢɪɭɟɬɫɹ ɞɜɢɠɟɧɢɟ ɌɆ ɩɨ ɩɟɪɢɨɞɢɱɟɫɤɢɦ ɧɟɪɨɜɧɨɫɬɹɦ ɝɚɪ- ɦɨɧɢɱɟɫɤɨɝɨ ɩɪɨɮɢɥɹ. ɉɟɪɜɨɧɚɱɚɥɶɧɨ ɦɚɲɢɧɚ ɧɚɯɨɞɢɬɫɹ ɧɚ ɝɨɪɢɡɨɧɬɚɥɶɧɨɣ ɩɨ- ɜɟɪɯɧɨɫɬɢ. ȼɫɟ ɨɛɨɛɳɟɧɧɵɟ ɤɨɨɪɞɢɧɚɬɵ ɢɦɟɸɬ ɡɧɚɱɟɧɢɹ, ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɟ ɩɨ- ɥɨɠɟɧɢɸ ɫɬɚɬɢɱɟɫɤɨɝɨ ɪɚɜɧɨɜɟɫɢɹ. Ⱦɚɥɟɟ ɦɨɞɟɥɢɪɭɟɬɫɹ ɫɴɟɡɞ ɌɆ ɧɚ ɧɟɪɨɜɧɨɫɬɢ ɝɚɪɦɨɧɢɱɟɫɤɨɝɨ ɩɪɨɮɢɥɹ ɬɚɤɢɦ ɨɛɪɚɡɨɦ, ɱɬɨ ɩɟɪɜɨɧɚɱɚɥɶɧɨ ɨɧɚ ɩɪɟɨɞɨɥɟɜɚɟɬ ɜɩɚɞɢɧɭ ɩɪɨɮɢɥɹ, ɢ ɩɪɨɯɨɠɞɟɧɢɟ ɩɭɬɢ, ɞɨɫɬɚɬɨɱɧɨɝɨ ɞɥɹ ɬɨɝɨ, ɱɬɨɛɵ ɩɚɪɚɦɟɬɪɵ ɤɨɥɟɛɚɧɢɣ ɭɫɬɚɧɨɜɢɥɢɫɶ (ɨɛɵɱɧɨ 5y8 ɧɟɪɨɜɧɨɫɬɟɣ). ȼ ɩɪɨɰɟɫɫɟ ɦɨɞɟɥɢɪɨɜɚɧɢɹ ɨɬɫɥɟɠɢɜɚɟɬɫɹ ɡɧɚɱɟɧɢɟ ɜɟɪɬɢɤɚɥɶɧɵɯ ɭɫɤɨɪɟɧɢɣ ɧɚ ɦɟɫɬɟ ɦɟɯɚɧɢɤɚ-ɜɨɞɢɬɟɥɹ ɢ ɫɪɚɜɧɢɜɚɟɬɫɹ ɫ ɤɨɧɬɪɨɥɶɧɵɦ ɡɧɚɱɟɧɢɟɦ.
Ⱦɥɹ ɧɚɯɨɠɞɟɧɢɹ ɬɨɱɟɤ ɫɤɨɪɨɫɬɧɵɯ ɯɚɪɚɤɬɟɪɢɫɬɢɤ ɫɥɟɞɭɟɬ ɢɫɩɨɥɶɡɨɜɚɬɶ ɦɟɬɨɞ ɩɨ- ɥɨɜɢɧɧɨɝɨ ɞɟɥɟɧɢɹ, ɫɨɫɬɨɹɳɢɣ ɜ ɞɚɧɧɨɦ ɫɥɭɱɚɟ ɜ ɫɥɟɞɭɸɳɟɦ (ɪɢɫ. 1.4):
1.Ɂɚɞɚɟɬɫɹ ɫɤɨɪɨɫɬɶ, ɞɥɹ ɤɨɬɨɪɨɣ ɪɚɫɫɱɢɬɵɜɚɟɬɫɹ ɬɨɱɤɚ ɫɤɨɪɨɫɬɧɨɣ ɯɚɪɚɤɬɟɪɢ- ɫɬɢɤɢ;
2.ȼɵɛɢɪɚɟɬɫɹ ɧɚɱɚɥɶɧɨɟ ɩɪɢɛɥɢɠɟɧɢɟ, ɬɨ ɟɫɬɶ ɞɜɟ ɜɵɫɨɬɵ ɧɟɪɨɜɧɨɫɬɢ, ɩɪɢ ɨɞɧɨɣ ɢɡ
H
A=L/2
A=L
A=2L
Hɜ
H0
Hɫɪ
Hɧ |
V |
0 |
V0 |
Ɋɢɫ. 1.4
8
ɤɨɬɨɪɵɯ ɤɨɧɬɪɨɥɶɧɵɣ ɩɚɪɚɦɟɬɪ ɞɨɫɬɢɝɚɟɬɫɹ, ɚ ɩɪɢ ɞɪɭɝɨɣ - ɧɟɬ. ɉɪɚɜɢɥɶɧɵɣ ɜɵɛɨɪ ɧɚɱɚɥɶɧɨɝɨɩɪɢɛɥɢɠɟɧɢɹɝɚɪɚɧɬɢɪɭɟɬɫɯɨɞɢɦɨɫɬɶɦɟɬɨɞɚɩɨɥɨɜɢɧɧɨɝɨɞɟɥɟɧɢɹ;
3.Ɇɨɞɟɥɢɪɨɜɚɧɢɟ ɩɪɨɯɨɠɞɟɧɢɹ ɬɪɚɫɫɵ ɫ ɜɵɫɨɬɨɣ ɧɟɪɨɜɧɨɫɬɢ, ɜɡɹɬɨɣ ɤɚɤ ɫɪɟɞɧɟɟ ɜ ɩɪɨɦɟɠɭɬɤɟ ɦɟɠɞɭ ɞɜɭɦɹ ɧɚɱɚɥɶɧɵɦɢ ɩɪɢɛɥɢɠɟɧɢɹɦɢ. ȿɫɥɢ ɩɪɢ ɷɬɨɦ ɛɵɥ ɞɨɫ- ɬɢɝɧɭɬ ɤɨɧɬɪɨɥɶɧɵɣ ɩɚɪɚɦɟɬɪ, ɬɨ ɜ ɫɪɟɞɧɸɸ ɬɨɱɤɭ ɩɟɪɟɧɨɫɢɬɫɹ ɜɟɪɯɧɟɟ ɩɪɢɛɥɢ- ɠɟɧɢɟ, ɢɧɚɱɟ - ɧɢɠɧɟɟ. Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɢɧɬɟɪɜɚɥ ɫɭɠɚɟɬɫɹ ɜɞɜɨɟ;
4.ɉɪɨɰɟɫɫ ɩɪɨɞɨɥɠɚɟɬɫɹ ɞɨ ɞɨɫɬɢɠɟɧɢɹ ɠɟɥɚɟɦɨɣ ɬɨɱɧɨɫɬɢ.
ɗɬɨɬ ɚɥɝɨɪɢɬɦ ɢɡɨɛɪɚɠɟɧ ɜ ɜɢɞɟ ɛɥɨɤ-ɫɯɟɦɵ ɧɚ ɪɢɫɭɧɤɟ 1.5. Ⱥɦɩɥɢɬɭɞɧɨ-ɱɚɫɬɨɬɧɚɹ ɯɚɪɚɤɬɟɪɢɫɬɢɤɚ ɩɨ ɭɫɤɨɪɟɧɢɹɦ ɬɪɹɫɤɢ ɪɚɫɫɱɢɬɵɜɚɟɬɫɹ ɞɥɹ ɧɟɫɤɨɥɶɤɢɯ ɡɧɚɱɟɧɢɣ ɫɤɨɪɨɫɬɟɣ ɩɪɢ ɞɥɢɧɟ ɧɟɪɨɜɧɨɫɬɢ, ɩɪɢɦɟɪɧɨ ɪɚɜɧɨɣ ɪɚɫɫɬɨɹ- ɧɢɸ ɦɟɠɞɭ ɤɚɬɤɚɦɢ ɦɚɲɢɧɵ ɢ ɜɵɫɨɬɟ ɧɟɪɨɜɧɨɫɬɟɣ, ɪɚɜɧɨɣ 0,05 ɦ.
ȼ ɫɨɨɬɜɟɬɫɬɜɢɢ ɫ ɬɪɟɛɨɜɚɧɢɹɦɢ ɤ ɩɨɞɜɟɫɤɚɦ ɫɨɜɪɟɦɟɧɧɵɯ ɬɪɚɧɫɩɨɪɬɧɵɯ ɦɚɲɢɧ ɡɧɚɱɟɧɢɹ ɩɨɤɚɡɚɬɟɥɟɣ ɩɥɚɜɧɨɫɬɢ ɯɨɞɚ ɞɨɥɠɧɵ ɫɨɫɬɚɜɥɹɬɶ:
-ɭɫɤɨɪɟɧɢɹ «ɬɪɹɫɤɢ»: 0,5g y 0,7g;
-ɦɢɧɢɦɚɥɶɧɚɹ ɩɪɨɯɨɞɧɚɹ ɜɵɫɨɬɚ ɧɟɪɨɜɧɨɫɬɢ ɩɨ «ɩɪɨɛɨɸ» ɢ «3,5g»— 0,20 ɦ. ɏɚɪɚɤɬɟɪɢɫɬɢɤɢ, ɩɨɥɭɱɟɧɧɵɟ ɧɚ ɷɬɨɦ ɷɬɚɩɟ, ɞɚɸɬ ɞɨɫɬɚɬɨɱɧɨɟ, ɯɨɬɹ ɢ ɧɟ ɩɨɥɧɨɟ ɩɪɟɞɫɬɚɜɥɟɧɢɟ ɨ ɤɚɱɟɫɬɜɟ ɯɨɞɨɜɨɣ ɫɢɫɬɟɦɵ. Ȼɨɥɟɟ ɩɨɞɪɨɛɧɭɸ ɢ ɞɨɫɬɨɜɟɪɧɭɸ ɢɧ- ɮɨɪɦɚɰɢɸ ɨ ɧɟɣ ɞɚɟɬ 3-ɢɣ ɷɬɚɩ.
1.3 Ɇɨɞɟɥɢɪɨɜɚɧɢɟ ɞɜɢɠɟɧɢɹ ȽɆ ɩɨ ɬɪɚɫɫɚɦ ɫ ɩɪɨɮɢɥɟɦ, ɩɨɥɭɱɟɧɧɵɦ ɧɚ ɨɫɧɨ- ɜɟ ɫɬɚɬɢɫɬɢɱɟɫɤɢɯ ɯɚɪɚɤɬɟɪɢɫɬɢɤ ɬɪɚɫɫ.
Ʉɚɤ ɩɪɚɜɢɥɨ, ɧɟɪɨɜɧɨɫɬɢ ɬɪɚɫɫ ɦɨɞɟɥɢɪɭɸɬɫɹ ɨɞɧɢɦ ɢɡ ɞɜɭɯ ɫɩɨɫɨɛɨɜ:
1.Ʉɚɤ ɫɥɭɱɚɣɧɵɣ ɩɪɨɰɟɫɫ, ɪɟɚɥɢɡɚɰɢɹ ɤɨɬɨɪɨɝɨ ɪɚɫɫɱɢɬɵɜɚɟɬɫɹ ɧɚ ɨɫɧɨɜɟ ɤɨɪɪɟ- ɥɹɰɢɨɧɧɨɣ ɮɭɧɤɰɢɢ ɜɵɫɨɬ ɧɟɪɨɜɧɨɫɬɟɣ ɞɨɪɨɝ;
2.Ʉɚɤ ɝɚɪɦɨɧɢɱɟɫɤɢɣ ɩɪɨɮɢɥɶ, ɝɟɧɟɪɢɪɭɟɦɵɣ ɩɨ ɮɭɧɤɰɢɹɦ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɜɵɫɨɬ, ɞɥɢɧ ɢ ɱɢɫɥɚ ɜɨɥɧ ɧɟɪɨɜɧɨɫɬɟɣ ɞɥɹ ɧɚɟɡɠɟɧɧɵɯ ɬɪɚɫɫ.
ɉɪɨɮɢɥɶ ɬɪɚɫɫɵ ɜ ɷɬɨɦ ɫɥɭɱɚɟ ɩɪɟɞɫɬɚɜɥɹɟɬ ɫɨɛɨɣ ɪɟɚɥɢɡɚɰɢɸ ɫɥɭɱɚɣɧɨɝɨ ɩɪɨ- ɰɟɫɫɚ. Ɇɨɞɟɥɢɪɭɟɬɫɹ ɩɪɨɯɨɠɞɟɧɢɟ ɦɚɲɢɧɨɣ ɭɱɚɫɬɤɚ ɞɨɪɨɝɢ ɞɥɢɧɨɣ 500-1000 ɦ ɫ ɨɩɪɟɞɟɥɟɧɢɟɦ ɞɥɹ ɞɚɥɶɧɟɣɲɟɣ ɨɛɪɚɛɨɬɤɢ ɬɚɤɢɯ ɯɚɪɚɤɬɟɪɢɫɬɢɤ, ɤɚɤ ɭɫɤɨɪɟɧɢɹ ɧɚ ɦɟɫɬɟ ɦɟɯɚɧɢɤɚ-ɜɨɞɢɬɟɥɹ, ɭɫɢɥɢɹ ɜ ɲɢɧɚɯ, ɚɦɨɪɬɢɡɚɬɨɪɚɯ ɢ ɭɩɪɭɝɢɯ ɷɥɟɦɟɧɬɚɯ, ɫɤɨɪɨɫɬɢ ɢ ɭɫɤɨɪɟɧɢɹ ɤɚɬɤɨɜ ɨɬɧɨɫɢɬɟɥɶɧɨ ɤɨɪɩɭɫɚ ɢ ɞɪ. ȼ ɩɪɨɰɟɫɫɟ ɦɨɞɟɥɢɪɨɜɚ- ɧɢɹ ɩɨɫɬɭɩɚɬɟɥɶɧɚɹ ɫɤɨɪɨɫɬɶ ɌɆ ɨɫɬɚɟɬɫɹ ɩɨɫɬɨɹɧɧɨɣ. Ⱦɥɢɧɚ ɬɪɚɫɫɵ ɜɵɛɢɪɚɟɬɫɹ ɢɡ ɭɫɥɨɜɢɹ, ɱɬɨ ɨɧɚ ɞɨɫɬɚɬɨɱɧɨ ɩɨɥɧɨ ɩɪɟɞɫɬɚɜɥɹɟɬ ɞɚɧɧɵɣ ɫɥɭɱɚɣɧɵɣ ɩɪɨɰɟɫɫ.
ɂɡɭɱɟɧɢɟ ɞɚɧɧɵɯ, ɩɨɥɭɱɟɧɧɵɯ ɜ ɪɟɡɭɥɶɬɚɬɟ ɦɨɞɟɥɢɪɨɜɚɧɢɹ, ɩɨɡɜɨɥɢɬ ɧɟ ɬɨɥɶɤɨ ɨɰɟɧɢɬɶ «ɩɥɚɜɧɨɫɬɶ ɯɨɞɚ» ɦɚɲɢɧɵ, ɧɨ ɢ ɫɞɟɥɚɬɶ ɜɵɜɨɞɵ ɨɛ ɨɫɨɛɟɧɧɨɫɬɹɯ ɤɨɧɫɬ- ɪɭɤɰɢɢ ɢ ɫɩɪɨɝɧɨɡɢɪɨɜɚɬɶ ɧɚɝɪɭɠɟɧɧɨɫɬɶ ɷɥɟɦɟɧɬɨɜ ɩɨɞɜɟɫɤɢ. Ɍɚɤ, ɧɚɥɢɱɢɟ ɧɟ- ɧɭɥɟɜɵɯ ɜɟɪɬɢɤɚɥɶɧɵɯ ɫɢɥ ɨɬ ɝɪɭɧɬɚ ɧɚ ɧɚɩɪɚɜɥɹɸɳɟɦ ɢɥɢ ɜɟɞɭɳɟɦ ɤɨɥɟɫɟ ɫɜɢ- ɞɟɬɟɥɶɫɬɜɭɟɬ ɨ ɬɨɦ, ɱɬɨ ɩɪɢ ɞɜɢɠɟɧɢɢ ɢɦɟɥɨ ɦɟɫɬɨ ɢɯ "ɭɬɵɤɚɧɢɟ" ɜ ɧɟɪɨɜɧɨɫɬɢ ɝɪɭɧɬɚ ɢ, ɜɨɡɦɨɠɧɨ, ɧɟɨɛɯɨɞɢɦɨ ɢɡɦɟɧɟɧɢɟ ɝɟɨɦɟɬɪɢɢ ɯɨɞɨɜɨɣ ɱɚɫɬɢ. Ɂɚɩɢɫɢ ɭɫɢɥɢɣ ɜ ɚɦɨɪɬɢɡɚɬɨɪɚɯ ɢ ɪɟɫɫɨɪɚɯ ɞɚɸɬ ɢɫɯɨɞɧɵɟ ɞɚɧɧɵɟ ɞɥɹ ɪɚɫɱɟɬɨɜ ɷɬɢɯ ɷɥɟ- ɦɟɧɬɨɜ ɧɚ ɞɨɥɝɨɜɟɱɧɨɫɬɶ.
Ɉɰɟɧɢɜɚɟɦɵɟ ɜɵɯɨɞɧɵɟ ɩɚɪɚɦɟɬɪɵ:
1.ɫɪɟɞɧɟɤɜɚɞɪɚɬɢɱɟɫɤɢɟ ɭɫɤɨɪɟɧɢɹ ɧɚ ɦɟɫɬɟ ɦɟɯɚɧɢɤɚ-ɜɨɞɢɬɟɥɹ;
2.ɱɚɫɬɨɬɚ ɩɪɨɛɨɟɜ, ɟɫɥɢ ɫɤɨɪɨɫɬɶ ɡɚɞɚɧɚ, ɢɥɢ ɫɪɟɞɧɹɹ ɫɤɨɪɨɫɬɶ. ɋɪɟɞɧɟɤɜɚɞɪɚɬɢɱɟɫɤɢɟ ɭɫɤɨɪɟɧɢɹ ɧɚ ɦɟɫɬɟ ɦɟɯɚɧɢɤɚ-ɜɨɞɢɬɟɥɹ ɢ ɱɚɫɬɨɬɚ «ɩɪɨɛɨ- ɟɜ» ɫɥɭɠɚɬ ɨɰɟɧɨɱɧɵɦ ɩɚɪɚɦɟɬɪɨɦ ɩɥɚɜɧɨɫɬɢ ɯɨɞɚ. Ɋɚɫɱɟɬɧɚɹ ɡɚɜɢɫɢɦɨɫɬɶ:

9
ɇɚɱɚɥɨ
Hɧ=0;
V0; H; Hɜ
|
ɧɟɬ |
|
|
ȼ ɬɨɱɤɟ Hɜ ɞɨɫɬɢɝɧɭɬ |
Hɧ=Hɜ; |
||
|
|||
ɤɨɧɬɪɨɥɶɧɵɣ ɩɚɪɚɦɟɬɪ? |
|
Hɜ=2Hɜ |
|
ɞɚ |
|
|
|
|
|
||
ɞɚ |
|
|
|
|HB – HH| < H |
|
|
|
ɧɟɬ |
|
|
|
Hɫɪ = (Hɜ + Hɧ)/2 |
|
|
ɞɚ |
ɧɟɬ |
|
ȼɬɨɱɤɟ Hɫɪ ɞɨɫɬɢɝɧɭɬ |
|
ɤɨɧɬɪɨɥɶɧɵɣ ɩɚɪɚɦɟɬɪ? |
Hɜ = Hɫɪ |
Hɧ = Hɫɪ |
Ɋɟɡɭɥɶɬɚɬ: H0 = (Hɧ+Hɜ)/2
Ʉɨɧɟɰ
Ɋɢɫ. 1.5

10
|
1 |
T0 |
2 |
zCK = |
T |
³0 |
z dt , ɝɞɟ |
|
|
||
|
0 |
|
|
T0 - ɜɪɟɦɹ ɧɚɛɥɸɞɟɧɢɹ, ɫ;
z - ɬɟɤɭɳɟɟ ɡɧɚɱɟɧɢɟ ɭɫɤɨɪɟɧɢɹ ɧɚ ɭɱɚɫɬɤɟ.
ȼ ɤɚɱɟɫɬɜɟ ɩɪɟɞɟɥɶɧɨ ɞɨɩɭɫɬɢɦɵɯ ɩɪɢɧɢɦɚɸɬɫɹ ɫɪɟɞɧɟɤɜɚɞɪɚɬɢɱɟɫɤɢɟ ɜɟɪɬɢ- ɤɚɥɶɧɵɟ ɭɫɤɨɪɟɧɢɹ 0,7g.
ɇɚ ɷɬɨɦ ɷɬɚɩɟ ɜɨɡɦɨɠɟɧ ɜɵɯɨɞ ɧɚ ɨɰɟɧɤɭ ɬɟɩɥɨɜɨɣ ɧɚɝɪɭɠɟɧɧɨɫɬɢ ɚɦɨɪɬɢɡɚɬɨɪɨɜ
ɢɞɨɥɝɨɜɟɱɧɨɫɬɢ ɭɡɥɨɜ ɩɨɞɜɟɫɤɢ.
2.Ɇɚɬɟɦɚɬɢɱɟɫɤɚɹ ɦɨɞɟɥɶ
2.1 Ɉɫɧɨɜɧɵɟ ɞɨɩɭɳɟɧɢɹ.
ɂɫɯɨɞɹ ɢɡ ɫɨɜɨɤɭɩɧɨɫɬɢ ɩɨɫɬɚɜɥɟɧɧɵɯ ɡɚɞɚɱ ɩɨ ɨɩɪɟɞɟɥɟɧɢɸ «ɩɥɚɜɧɨɫɬɢ» ɯɨɞɚ, ɤɨɬɨɪɵɟ ɞɨɥɠɧɵ ɛɵɬɶ ɪɟɲɟɧɵ ɦɚɬɟɦɚɬɢɱɟɫɤɢɦ ɦɨɞɟɥɢɪɨɜɚɧɢɟɦ ɧɚ ɗȼɆ, ɫɮɨɪ- ɦɭɥɢɪɭɟɦ ɬɪɟɛɨɜɚɧɢɹ, ɤɨɬɨɪɵɦ ɞɨɥɠɧɚ ɭɞɨɜɥɟɬɜɨɪɹɬɶ ɦɨɞɟɥɶ ɞɜɢɠɟɧɢɹ ɌɆ ɩɨ ɬɪɚɫɫɟ:
-ɦɨɞɟɥɶ ɞɨɥɠɧɚ ɨɬɪɚɠɚɬɶ ɫɨɜɦɟɫɬɧɭɸ ɞɢɧɚɦɢɤɭ ɤɨɪɩɭɫɚ ɢ ɯɨɞɨɜɨɣ ɱɚɫɬɢ;
-ɜ ɦɨɞɟɥɢ ɞɨɥɠɟɧ ɛɵɬɶ ɭɱɬɟɧ ɧɟɭɞɟɪɠɢɜɚɸɳɢɣ ɯɚɪɚɤɬɟɪ ɫɜɹɡɟɣ, ɧɚɥɨɠɟɧɧɵɯ ɧɚ ɌɆ;
-ɪɟɡɭɥɶɬɚɬɚɦɢ ɦɨɞɟɥɢɪɨɜɚɧɢɹ ɞɨɥɠɧɵ ɛɵɬɶ ɫɢɥɨɜɵɟ ɢ ɤɢɧɟɦɚɬɢɱɟɫɤɢɟ ɩɚɪɚ- ɦɟɬɪɵ ɞɜɢɠɟɧɢɹ ɦɚɲɢɧɵ;
-ɦɨɞɟɥɶ ɞɨɥɠɧɚ ɛɵɬɶ ɤɚɤ ɦɨɠɧɨ ɛɨɥɟɟ ɭɧɢɜɟɪɫɚɥɶɧɨɣ ɜ ɨɬɧɨɲɟɧɢɢ ɌɆ ɫ ɪɚɡ- ɥɢɱɧɵɦɢ ɤɨɧɫɬɪɭɤɬɢɜɧɵɦɢ ɩɚɪɚɦɟɬɪɚɦɢ, ɚ ɬɚɤɠɟ ɜ ɨɬɧɨɲɟɧɢɢ ɯɚɪɚɤɬɟɪɚ ɞɨ- ɪɨɠɧɵɯ ɭɫɥɨɜɢɣ;
-ɞɥɹ ɩɪɚɤɬɢɱɟɫɤɨɣ ɪɟɚɥɢɡɚɰɢɢ ɦɚɬɟɦɚɬɢɱɟɫɤɨɣ ɦɨɞɟɥɢ ɞɨɥɠɧɵ ɢɫɩɨɥɶɡɨɜɚɬɶɫɹ
ɧɚɢɛɨɥɟɟ ɷɮɮɟɤɬɢɜɧɵɟ ɜɵɱɢɫɥɢɬɟɥɶɧɵɟ ɦɟɬɨɞɵ.
ɉɪɢ ɦɚɬɟɦɚɬɢɱɟɫɤɨɦ ɨɩɢɫɚɧɢɢ ɞɢɧɚɦɢɤɢ ɩɪɹɦɨɥɢɧɟɣɧɨɝɨ ɞɜɢɠɟɧɢɹ ɌɆ ɩɪɢɧɹɬɵ ɫɥɟɞɭɸɳɢɟ ɞɨɩɭɳɟɧɢɹ:
1.ɞɨɪɨɠɧɵɟ ɭɫɥɨɜɢɹ ɨɞɢɧɚɤɨɜɵ ɩɨɞ ɨɛɟɢɦɢ ɝɭɫɟɧɢɰɚɦɢ, ɩɪɨɮɢɥɶ ɬɪɚɫɫɵ ɧɟɞɟ- ɮɨɪɦɢɪɭɟɦɵɣ, ɤɭɫɨɱɧɨ-ɥɢɧɟɣɧɵɣ;
2.ɫɢɫɬɟɦɚ ɫɢɦɦɟɬɪɢɱɧɚ ɨɬɧɨɫɢɬɟɥɶɧɨ ɩɪɨɞɨɥɶɧɨɣ ɨɫɢ, ɩɪɨɯɨɞɹɳɟɣ ɱɟɪɟɡ ɰɟɧɬɪ ɬɹɠɟɫɬɢ ɤɨɪɩɭɫɚ ɦɚɲɢɧɵ;
3.ɤɨɪɩɭɫ ɧɟɞɟɮɨɪɦɢɪɭɟɦ;
4.ɬɪɟɧɢɟ ɜ ɲɚɪɧɢɪɚɯ, ɩɨɞɲɢɩɧɢɤɚɯ ɩɪɟɧɟɛɪɟɠɢɦɨ ɦɚɥɨ;
5.ɜɟɥɢɱɢɧɚ ɩɪɨɟɤɰɢɢ ɫɤɨɪɨɫɬɢ ɰɟɧɬɪɚ ɦɚɫɫ ɦɚɲɢɧɵ ɧɚ ɝɨɪɢɡɨɧɬɚɥɶɧɭɸ ɨɫɶ ɩɨ- ɫɬɨɹɧɧɚ;
6.ɝɭɫɟɧɢɰɚ ɩɪɟɞɫɬɚɜɥɟɧɚ ɭɩɪɭɝɨɣ ɧɟɜɟɫɨɦɨɣ ɧɢɬɶɸ, ɧɚɬɹɠɟɧɢɟ ɤɨɬɨɪɨɣ ɧɚ ɜɫɟɯ
ɭɱɚɫɬɤɚɯ ɨɞɢɧɚɤɨɜɨ.
ɉɪɢɧɹɬɵɟ ɞɨɩɭɳɟɧɢɹ ɩɨɡɜɨɥɹɸɬ ɪɚɫɫɦɚɬɪɢɜɚɬɶ ɞɜɢɠɟɧɢɟ ɦɚɲɢɧɵ ɜ ɜɟɪɬɢɤɚɥɶ- ɧɨɣ ɩɥɨɫɤɨɫɬɢ, ɩɪɨɯɨɞɹɳɟɣ ɱɟɪɟɡ ɰɟɧɬɪ ɬɹɠɟɫɬɢ ɤɨɪɩɭɫɚ ɌɆ.
ɂɫɯɨɞɧɵɦ ɞɚɧɧɵɦɢ ɞɥɹ ɦɨɞɟɥɢɪɨɜɚɧɢɹ ɹɜɥɹɸɬɫɹ ɢɧɟɪɰɢɨɧɧɵɟ, ɤɢɧɟɦɚɬɢɱɟɫɤɢɟ ɢ ɫɢɥɨɜɵɟ ɩɚɪɚɦɟɬɪɵ ɦɚɲɢɧɵ, ɚ ɬɚɤɠɟ ɞɨɪɨɠɧɵɟ ɭɫɥɨɜɢɹ, ɚ ɢɦɟɧɧɨ:
-ɦɚɫɫɚ ɌɆ;
-ɦɨɦɟɧɬ ɢɧɟɪɰɢɢ ɨɬɧɨɫɢɬɟɥɶɧɨ ɩɪɨɞɨɥɶɧɨɣ ɨɫɢ, ɩɪɨɯɨɞɹɳɟɣ ɱɟɪɟɡ ɰɟɧɬɪ ɬɹɠɟ- ɫɬɢ;