
- •Раздел 6.
- •Раздел 6. Модели и алгоритмы решения задач численными методами с использованием математических пакетов Рекомендации по использованию учебного пособия
- •Тема 6.1. Элементы теории погрешностей
- •6.1.1. Точные и приближенные числа
- •6.1.2. Абсолютная и относительная погрешность
- •Тема 6.2. Методы решения нелинейных уравнений
- •6.2.1. Постановка задачи
- •Отделение корней (локализация корней);
- •Итерационное уточнение корней.
- •6.2.2. Отделение корней
- •6.2.2.1. Графическое отделение корней
- •6.2.2.2. Аналитическое отделение корней
- •6.2.3. Уточнение корней
- •6.2.3.1. Метод половинного деления
- •6.2.3.2. Метод итерации
- •6.2.3.3. Метод Ньютона (метод касательных)
- •6.2.3.4. Метод хорд
- •6.2.3.5. Сравнение методов решения нелинейных уравнений
- •6.2.4. Технология решения нелинейных уравнений средствами MathCad
- •Тема 6.3. Интерполяция функций
- •6.3.1. Постановка задачи
- •6.3.2. Интерполяционная формула Лагранжа
- •6.3.3. Интерполяционные формулы Ньютона
- •6.3.3.1. Конечные разности
- •6.3.3.2. Первая интерполяционная формула Ньютона
- •6.3.3.3. Вторая интерполяционная формула Ньютона
- •6.3.4. Сплайн – интерполяция
- •6.3.5. Сравнение интерполяционных многочленов по применению
- •6.3.6. Технология интерполяции функций в среде математических пакетов
- •Тема 6.4. Численное интегрирование
- •6.4.1. Постановка задачи
- •6.4.2. Метод прямоугольников
- •6.4.3. Формула трапеций
- •6.4.4. Формула Симпсона
- •6.4.5. Оценка погрешности численного интегрирования
- •6.4.6. Технология вычисления интегралов в среде математических пакетов
- •Тема 6.5. Методы решения обыкновенных дифференциальных уравнений
- •6.5.1. Постановка задачи
- •6.5.2. Метод Эйлера
- •6.5.3. Методы Рунге-Кутты
- •6.5.4. Решение оду n-го порядка
- •6.5.5. Сравнение методов решения оду
- •6.5.6. Технология решения обыкновенных дифференциальных уравнений средствами математических пакетов
- •6.6.2. Метод дихотомии
- •6.6.3. Метод золотого сечения
- •6.6.4. Сравнение методов
- •6.6.5. Технология решения задач одномерной оптимизации средствами математических пакетов
- •Тема 6.7. Аппроксимация функций
- •6.7.1. Постановка задачи аппроксимации
- •6.7.2. Метод наименьших квадратов
- •6.7.3. Технология решения задач аппроксимации функций средствами математических пакетов
- •Тема 6.8. Многомерная оптимизация
- •6.8.1. Постановка задачи и основные определения
- •6.8.2. Методы спуска
- •6.8.3. Метод градиентного спуска с дроблением шага
- •6.8.4. Метод наискорейшего спуска
- •6.8.5. Проблема оврагов. Метод покоординатного спуска
- •6.8.6. Технология решения задач многомерной оптимизации средствами математических пакетов
- •Список литературы
- •Тема 6.4. Численное интегрирование................................................71
- •Тема 6.5. Методы решения обыкновенных дифференциальных Уравнений............................................................................. 92
- •Тема 6.6. Одномерная оптимизация................................................ 115
- •Тема 6.7. Аппроксимация функций....................................................132
- •Тема 6.8. Методы многомерной оптимизации............................... 149
- •Список литературы.................................................................... 204
Тема 6.4. Численное интегрирование
6.4.1. Постановка задачи
6.4.2. Метод прямоугольников
6.4.3. Формула трапеций
6.4.4. Формула Симпсона
6.4.5. Оценка погрешности численного интегрирования
6.4.6. Технология вычисления интегралов в среде математических пакетов
6.4.1. Постановка задачи
Из курса математического анализа известно, что, если функция f(x) непрерывна на отрезке [a;b] и дифференцируема, то определенный интеграл от этой функции в пределах от a до b существует и может быть вычислен по формуле Ньютона-Лейбница:
Если первообразную функцию F(x) не удается выразить аналитически через элементарные функции или если при проведении практических расчетов подынтегральная функция f(x) задается в виде таблицы, то это приводит к необходимости замены аналитического интегрирования численными методами.
Для функции f(x), заданной в прямоугольной системе координат на интервале [a;b], этот интеграл численно равен площади, ограниченной кривой f(x), осью Ox и двумя ординатами ac и bd.
Рис. 6.4.1-1
Задача численного интегрирования заключается в нахождении значения определенного интеграла через ряд значений подынтегральной функции yi=f(xi), заданной в точках xi (i=0,1,…,n). Причем, x0 = a, xn = b. Чаще всего интервал разбивают на подынтервалы длиной h = xi+1 - xi.
Применительно к однократному интегралу, формулы численного интегрирования представляют собой квадратурные формулы вида:
где Ai – числовые коэффициенты, называемые весами квадратурной формулы, а xi – точки из отрезка - узлами квадратурной формулы, n > 0 – целое число.
Искомый определенный интеграл можно представить в виде суммы интегралов:
На каждом i-м отрезке функция аппроксимируется (заменяется) некоторой другой легко интегрируемой функцией gi(x). В результате получаем следующую квадратурную формулу:
.
Для решения поставленной задачи подынтегральную функцию f(x) необходимо заменить приближенной функцией, которая может быть проинтегрирована в аналитическим виде. В качестве такой функции обычно используют полином Р(х) с узлами интерполяции в точках х0, х1, х2, …,хn. В этих точках значения функции и интерполяционного полинома полностью совпадают f(xi) = Р(xi).
Для получения простых формул интегрирования используют полиномы нулевой, первой и второй степени и соответственно получают формулы численного интегрирования: прямоугольников, трапеций и Симпсона.
Очевидно, что замена функции f(x) интерполирующим полиномом приводит к образованию погрешности вычисления значения интеграла
где
I1
– точное значение интеграла, I
– значение интеграла, вычисленного
численным методом, а
– погрешность метода.
Отметим, что увеличение числа подынтервалов n (или уменьшение длины шага интегрирования h) ведет к уменьшению погрешности.
6.4.2. Метод прямоугольников
Заменим подынтегральную функцию f(x) в пределах элементарного отрезка [xi;xi+1] интерполяционным многочленом нулевой степени (рис.6.4.2-1), то есть постоянной величиной, равной либо f(xi), либо f(xi+1).
Рис. 6.4.2-1
Значение элементарного интеграла равно площади прямоугольника, в первом случае I = h∙f(xi), а во втором I = h∙f(xi+1), где h = xi+1 - xi. Для определения значения интеграла на отрезке [a;b] найдем суммы элементарных интегралов, взяв в первом случае в качестве f(x) – значение подынтегральной функции в левом конце i-го отрезка, а во втором – в правом конце отрезка:
(6.4.2-1)
(6.4.2-2)
Формула (6.4.2-1) называется формулой левых прямоугольников, а формула (6.4.-2.2) – формулой правых прямоугольников.
Для вычисления определенного интеграла может быть использована и формула средних прямоугольников (6.4.2-3), в которой на элементарном отрезке интегрирования функция f(x) тоже заменяется интерполяционным многочленом нулевой степени, но равным значению функции в середине отрезка:
(6.4.2-3)