
- •Предисловие
- •Введение
- •1 Введение в математический анализ
- •1.1 Множества. Операции над множествами
- •1.2 Числовые множества. Границы числовых множеств
- •1.2.1 Множества действительных чисел
- •1.2.2 Множества комплексных чисел
- •1.3 Функции или отображения
- •1.3.1 Понятие функции
- •1.3.2 Частные классы отображений
- •1.3.3 Основные элементарные функции
- •1.3.4 Суперпозиция (композиция) отображений. Сложная и обратная функции
- •1.4 Системы окрестностей в R и Rn
- •1.5 Предел функции
- •1.5.1 Понятие предела функции
- •1.5.2 Последовательность и её предел
- •1.5.3 Определение предела функции на языке последовательностей
- •1.5.4 Односторонние пределы
- •1.5.5 Теоремы о пределах
- •1.6 Непрерывность функции в точке
- •1.6.1 Основные понятия и теоремы
- •1.6.2 Классификация точек разрыва
- •1.7 Замечательные пределы
- •1.7.1 Первый замечательный предел
- •1.7.2 Второй замечательный предел и его следствия
- •1.8 Бесконечно малые и бесконечно большие функции
- •1.8.1 Теоремы о свойствах бесконечно малых функций
- •1.8.2 Сравнение бесконечно малых и бесконечно больших функций
- •Вопросы к разделу 1
- •2 Дифференциальное исчисление
- •2.1 Дифференцируемые отображения
- •2.2 Строение производной матрицы
- •2.3 Некоторые свойства производных
- •2.4 Производная по направлению
- •2.5 Производные высших порядков
- •2.6 Функции, заданные параметрически, и их дифференцирование
- •2.7 Функции, заданные неявно, и их дифференцирование
- •2.8 Геометрический и механический смысл производной
- •2.10 Дифференциал функции
- •2.11 Дифференциалы высших порядков
- •2.12 Формула Тейлора
- •2.13 Основные теоремы дифференциального исчисления
- •2.14 Правило Лопиталя
- •2.15 Условия постоянства функции. Условия монотонности функции
- •2.16 Экстремумы
- •2.16.1 Необходимые условия экстремума
- •2.16.2 Достаточные условия экстремума
- •2.16.3 Отыскание наибольшего и наименьшего значений функции
- •2.18 Асимптоты графика функции
- •Вопросы к разделу 2
- •3 Методические указания
- •3.1 Понятие функции. Область определения
- •3.2 Предел последовательности
- •3.3 Предел функции
- •3.4 Первый замечательный предел
- •3.5 Второй замечательный предел
- •3.6 Следствия второго замечательного предела
- •3.7 Сравнение бесконечно малых и бесконечно больших функций
- •3.8 Непрерывность функции. Классификация разрывов функции
- •3.9 Техника дифференцирования функций одного аргумента
- •3.10 Производная высших порядков функций одного аргумента
- •3.11 Частные производные
- •3.12 Производная по направлению
- •3.13 Производные параметрически заданных функций
- •3.14 Дифференцирование функций, заданных неявно
- •3.15 Геометрический и механический смысл производной
- •3.16 Дифференциал
- •3.17 Экстремумы. Наибольшие и наименьшие значения функции
- •3.18 Исследование функций и построение графиков
- •4 Контрольные работы
- •4.1 О самоконтроле при выполнении работ
- •4.2 Контрольная работа № 3
- •Вариант 3.1
- •Вариант 3.2
- •Вариант 3.3
- •Вариант 3.4
- •Вариант 3.5
- •Вариант 3.6
- •Вариант 3.7
- •Вариант 3.8
- •Вариант 3.9
- •Вариант 3.10
- •4.3 Контрольная работа № 4
- •Вариант 4.1
- •Вариант 4.2
- •Вариант 4.3
- •Вариант 4.4
- •Вариант 4.5
- •Вариант 4.6
- •Вариант 4.7
- •Вариант 4.8
- •Вариант 4.9
- •Вариант 4.10
- •Заключение
- •Литература
- •Ответы
- •Приложение
- •Предметный указатель

160 |
3. Методические указания |
|
|
3.17.20 Представьте положительное число a в виде произведения четырех положительных чисел так, чтобы их сумма была наименьшей.
Ответ: все множители равны между собой.
3.18 Исследование функций и построение графиков
Предлагаем изучить пп. 2.15 — 2.19 и разобрать примеры исследования функций и построения графиков, приведённые в п. 2.19.
Задачи для самостоятельного решения 3.18.1 Проведите полное исследование и постройте графики следующих функ-
ций: |
|
|
|
|
|
√x |
|
√ |
|
|
|
а) y x6 |
3x4 |
3x2 |
5; б) y |
|
|
|
; |
||||
|
|
x 1 |
|||||||||
|
= |
−2 |
+ |
− |
= |
3 |
|
− |
3 |
+ |
|
|
|
|
|
|
|
|
|
|
|
|
в) y = 2x ; г) y = x + ln(x2 − 1); д) y = x2e1/x. x2 − 4
Рекомендуется проделать все исследование самостоятельно, а затем проверить себя, используя пособие И.А. Марона [14].
3.18.2 Постройте графики гиперболических функций: а) y = sh x, б) y = ch x, в) y = th x, г) y = cth x.